Skip to main content
Log in

Ecological Variables Affecting Predatory Success in Myxococcus xanthus

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The feeding efficiency of microbial predators depends on both the availability of various prey species and abiotic variables. Myxococcus xanthus is a bacterial predator that searches for microbial prey by gliding motility, and then kills and lyses its prey with secreted compounds. We manipulated three ecological variables to examine their effects on the predatory performance of M. xanthus to better understand its behavior and how it affects prey populations. Experiments were designed to determine how surface solidity (hard vs soft agar), density of prey patches (1 vs 2 cm grids), and type of prey (Gram-positive Micrococcus luteus vs Gram-negative Escherichia coli) affect predatory swarming and prey killing by M. xanthus. The prey were dispersed in patches on a buffered agar surface. M. xanthus swarms attacked a greater proportion of prey patches when patches were densely arranged on a hard-agar surface, compared with either soft-agar surfaces or low-patch-density arrangements. These ecological variables did not significantly influence the rate of killing of individual prey within a patch, although a few surviving prey were more likely to be recovered on soft agar than on hard agar. These results indicate that M. xanthus quickly kills most nearby E. coli or M. luteus regardless of the surface. However, the ability of M. xanthus to search out patches of these prey is affected by surface hardness, the density of prey patches, and the prey species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Alexander, M (1981) Why microbial predators and parasites do not eliminate their prey and hosts. Annu Rev Microbiol 35: 113–133

    Article  PubMed  CAS  Google Scholar 

  2. Bohannan, BJM, Lenski, RE (2000) Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecol Lett 3: 362–377

    Article  Google Scholar 

  3. Bretscher, AP, Kaiser, D (1978) Nutrition of Myxococcus xanthus, a fruiting myxobacterium. J Bacteriol 133: 763–768

    PubMed  CAS  Google Scholar 

  4. Bull, CT, Shetty, KG, Subbarao, KV (2002) Interactions between Myxobacteria, plant pathogenic fungi, and biocontrol agents. Plant Dis 86: 889–896

    Article  Google Scholar 

  5. Carlton, BC, Brown, BJ (1981) Gene mutation. In: Gerhardt, P, Murray, R, Costilow, R, Nester, E, Wood, W, Krigg, N, Philips, G (Eds.) Manual of Methods for General Bacteriology. American Society for Microbiology, Washington, D.C., pp 222–242

    Google Scholar 

  6. Dworkin, M (1996) Recent advances in the social and developmental biology of the Myxobacteria. Microbiol Rev 60: 70–102

    PubMed  CAS  Google Scholar 

  7. Estes, JA, Tinker, MT, Williams, TM, Doak, DF (1998) Killer whale predation on sea otters linking oceanic and nearshore ecosystems. Science 282: 473–476

    Article  PubMed  CAS  Google Scholar 

  8. Fiegna, F, Velicer, GJ (2005) Exploitative and hierarchical antagonism in a cooperative bacterium. PLoS Biol 3: 1980–1987

    Article  CAS  Google Scholar 

  9. Fontes, M, Kaiser, D (1999) Myxococcus cells respond to elastic forces in their substrate. Proc Natl Acad Sci U S A 96: 8052–8057

    Article  PubMed  CAS  Google Scholar 

  10. Hart, BA, Zahler, SA (1966) Lytic enzyme produced by Myxococcus xanthus. J Bacteriol 92: 1632–1637

    PubMed  CAS  Google Scholar 

  11. Hillesland, KL, Velicer, GJ (2005) Resource level affects relative performance of the two motility systems of Myxococcus xanthus. Microb Ecol 49: 558–566

    Article  PubMed  Google Scholar 

  12. Hodgkin, J, Kaiser, D (1979) Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): two gene systems control movement. Mol Gen Genet 171: 177–191

    Article  Google Scholar 

  13. Holling, CS (1959) Some characteristics of simple types of predation and parasitism. Can Entomol 91: 385–398

    Article  Google Scholar 

  14. Jackson, L, Whiting, RC (1992) Reduction of an Escherichia coli K12 population by Bdellovibrio bacteriovorus under various in vitro conditions of parasite:host ratio, temperature, or pH. J Food Protect 55: 859–861

    Google Scholar 

  15. Jurgens, K, Matz, C (2002) Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. Antonie van Leeuwenhoek 81: 413–434

    Article  PubMed  CAS  Google Scholar 

  16. Kaiser, D (1979) Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc Natl Acad Sci U S A 76: 5952–5956

    Article  PubMed  CAS  Google Scholar 

  17. Kaiser, D (2003) Coupling cell movement to multicellular development in Myxobacteria. Nat Rev Microbiol 1: 45–54

    Article  PubMed  CAS  Google Scholar 

  18. Kearns, DB, Shimkets, LJ (2001) Lipid chemotaxis and signal transduction in Myxococcus xanthus. Trends Microbiol 9: 126–129

    Article  PubMed  CAS  Google Scholar 

  19. Martin, MO (2002) Predatory prokaryotes: an emerging research opportunity. J Mol Microbiol Biotechnol 4: 467–477

    PubMed  CAS  Google Scholar 

  20. Messier, F (1994) Ungulate population models with predation: a case study with the North American moose. Ecology 75: 478–488

    Article  Google Scholar 

  21. Mittelbach, GG, Turner, AM, Hall, DJ, Rettig, JE, Osenberg, CW (1995) Perturbation and resilience: a long-term, whole lake study of predator extinction and reintroduction. Ecology 76: 2347–2360

    Article  Google Scholar 

  22. Pham, VD, Shebelut, CW, Diodati, ME, Bull, CT, Singer, M (2005) Mutations affecting predation ability of the soil bacterium Myxococcus xanthus. Microbiology 151: 1865–1874

    Article  PubMed  CAS  Google Scholar 

  23. Reichenbach, H, Gerth, K, Irschik, H, Kunze, B, Höfle, G (1988) Myxobacteria: a source of new antibiotics. TIBTECH 6: 115–121

    CAS  Google Scholar 

  24. Reichenbach, H, Höfle, G (1993) Biologically active secondary metabolites from Myxobacteria. Biotechnol Adv 11: 219–277

    Article  PubMed  CAS  Google Scholar 

  25. Rønn, R, McCaig, AE, Griffiths, BS, Prosser, JI (2002) Impact of protozoan grazing on bacterial community structure in soil microcosms. Appl Environ Microbiol 68: 6094–6105

    Article  PubMed  CAS  Google Scholar 

  26. Rosenberg, E, Vaks, B, Zuckerberg, A (1973) Bactericidal action of an antibiotic produced by Myxococcus xanthus. Antimicrob Agents Chemother 4: 507–513

    PubMed  CAS  Google Scholar 

  27. Rosenberg, E, Varon, M (1984) Antibiotics and lytic enzymes. In: Rosenberg, E (Ed.) Myxobacteria: Development and Cell Interactions. Springer-Verlag, New York, pp 109–125

    Google Scholar 

  28. Sambrook, J, Fritsch, E, Maniatis, T (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Plainview, NY

    Google Scholar 

  29. SAS Institute (2001) The SAS System. SAS Institute, Cary, NC

    Google Scholar 

  30. Schmitz, OJ (1998) Direct and indirect effects of predation and predation risk in old-field interaction webs. Am Nat 151: 327–342

    Article  CAS  PubMed  Google Scholar 

  31. Shi, W, Zusman, DR (1993) The two motility systems of Myxococcus xanthus show different selective advantages on various surfaces. Proc Natl Acad Sci U S A 90: 3378–3382

    Article  PubMed  CAS  Google Scholar 

  32. Spiller, DA, Schoener, TW (1998) Lizards reduce spider species richness by excluding rare species. Ecology 79: 503–516

    Article  Google Scholar 

  33. Spormann, AM (1999) Gliding motility in bacteria: insights from studies of Myxococcus xanthus. Microbiol Mol Biol Rev 63: 621–641

    PubMed  CAS  Google Scholar 

  34. Stenseth, NC, Shabbar, A, Chan, KS, Boutin, S, Rueness, EK, Ehrich, D, Hurrell, JW, Lingjærde, OC, Jakobsen, KS (2004) Snow conditions may create an invisible barrier for lynx. Proc Natl Acad Sci U S A 101: 10632–10634

    Article  PubMed  CAS  Google Scholar 

  35. Sudo, S, Dworkin, M (1972) Bacteriolytic enzymes produced by Myxococcus xanthus. J Bacteriol 110: 236–245

    PubMed  CAS  Google Scholar 

  36. Sun, H, Zusman, DR, Shi, W (2000) Type IV pilus of Myxococcus xanthus is a motility apparatus controlled by the frz chemosensory system. Curr Biol 10: 1143–1146

    Article  PubMed  CAS  Google Scholar 

  37. Varon, M, Zeigler, BP (1978) Bacterial predator–prey interaction at low prey density. Appl Environ Microbiol 36: 11–17

    PubMed  Google Scholar 

  38. Varon, M, Fine, M, Stein, A (1984) The maintenance of Bdellovibrio at low prey density. Microb Ecol 10: 95–98

    Article  Google Scholar 

  39. Velicer, GJ, Kroos, L, Lenski, RE (1998) Loss of social behaviors by Myxococcus xanthus during evolution in an unstructured habitat. Proc Natl Acad Sci U S A 95: 12376–12380

    Article  PubMed  CAS  Google Scholar 

  40. Vlamakis, HC, Kirby, JR, Zusman, DR (2004) The Che4 pathway of Myxococcus xanthus regulates type IV pilus-mediated motility. Mol Microbiol 52: 1799–1811

    Article  PubMed  CAS  Google Scholar 

  41. Wolgemuth, C, Hoiczyk, E, Kaiser, D, Oster, G (2002) How Myxobacteria glide. Curr Biol 12: 369–377

    Article  PubMed  CAS  Google Scholar 

  42. Yang, Z, Geng, Y, Xu, D, Kaplan, HB, Shi, W (1998) A new set of chemotaxis homologues is essential for Myxococcus xanthus social motility. Mol Microbiol 30: 1123–1130

    Article  PubMed  CAS  Google Scholar 

  43. Yang, Z, Ma, X, Tong, L, Kaplan, HB, Shimkets, LJ, Shi, W (2000) Myxococcus xanthus dif genes are required for biogenesis of cell surface fibrils essential for social gliding motility. J Bacteriol 182: 5793–5798

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Neerja Hajela for technical assistance, and members of the Lenski and Velicer groups for valuable discussion. This research was supported by a grant from the U.S. National Science Foundation (R.E. Lenski).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristina L. Hillesland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hillesland, K.L., Lenski, R.E. & Velicer, G.J. Ecological Variables Affecting Predatory Success in Myxococcus xanthus . Microb Ecol 53, 571–578 (2007). https://doi.org/10.1007/s00248-006-9111-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-006-9111-3

Keywords

Navigation