Skip to main content

Advertisement

Log in

Evidence-based outcomes on diagnostic accuracy of quantitative ultrasound for assessment of pediatric osteoporosis — a systematic review

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

Dual-energy absorptiometry (DXA) is the current reference standard for assessing pediatric osteoporosis; however due to its areal nature, it has limitations. Thus, quantitative ultrasound (QUS), a modality free of ionizing radiation, has been proposed as a potential surrogate for DXA.

Objective

To semi-quantitatively assess the diagnostic accuracy of QUS for evaluating pediatric osteoporosis according to the U.S. Preventive Services Task Force guidelines.

Materials and methods

We retrieved articles on the diagnostic accuracy of quantitative US for assessing abnormal bone quality or quantity in patients of mean age ≤19 years from MEDLINE, EMBASE and Cochrane Library CCTR databases. Evidences were analyzed for reliability, construct and criterion validity, and responsiveness of quantitative US, according to the following questions: (1) How reliable is the acquisition of QUS measurements? (2) Is QUS diagnostically accurate to characterize bone strength and quality in osteoporotic children? (3) Is QUS sensitive to detect changes in bone status over time? (4) Is QUS able to predict future skeletal fractures/degeneration? Three reviewers independently evaluated the quality of reporting and methodological quality using the Standards for Reporting of Diagnostic Accuracy (STARD) and the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tools.

Results

Out of 262 retrieved references (215 unique), we included 28 studies (1,963 patients; 807 reported boys and 761 girls, others unspecified; reported mean age, 0–19 years). The mean quality of reporting score was “excellent” in 24/28 (86%) studies; 11/28 (39%) studies had “adequate” research design quality.

Conclusion

There is no evidence of the diagnostic value of QUS at the present time despite the overall excellent and adequate research design quality of primary studies. Although QUS can produce reliable measurements, insufficient evidence has been reported to support other clinimetric properties of this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Njeh CF, Shaw N, Gardner-Medwin JM et al (2000) Use of quantitative ultrasound to assess bone status in children with juvenile idiopathic arthritis. J Clin Densitom 3:251–560

    Article  CAS  PubMed  Google Scholar 

  2. Levine A, Mishna L, Ballin A et al (2002) Use of quantitative ultrasound to assess osteopenia in children with Crohn disease. J Pediatr Gastroenterol Nutr 35:169–172

    Article  PubMed  Google Scholar 

  3. Ahuja SP, Greenspan SL, Lin Y et al (2006) A pilot study of heel ultrasound to screen for low bone mass in children with leukemia. J Pediatr Hematol Oncol 28:427–432

    Article  PubMed  Google Scholar 

  4. Falcini F, Bindi G, Ermini M et al (2000) Comparison of quantitative calcaneal ultrasound and dual energy x-ray absorptiometry in the evaluation of osteoporotic risk in children with chronic rheumatic diseases. Calcif Tissue Int 67:19–23

    Article  CAS  PubMed  Google Scholar 

  5. Azcona C, Burghar E, Ruza E et al (2003) Reduced bone mineralization in adolescent survivors of malignant bone tumors: comparison of quantitative ultrasound and dual-energy x-ray absorptiometry. J Pediatr Hematol Oncol 25:297–302

    Article  PubMed  Google Scholar 

  6. Fewtrell MS, Loh KL, Chomtho S et al (2008) Quantitative ultrasound (QUS): a useful tool for monitoring bone health in preterm infants? Acta Paediatr 97:1625–1630

    Article  CAS  PubMed  Google Scholar 

  7. Pereira-da-Silva L, Costa AB, Pereira L et al (2011) Early high calcium and phosphorus intake by parenteral nutrition prevents short-term bone strength decline in preterm infants. J Pediatr Gastroenterol Nutr 52:203–209

    Article  CAS  PubMed  Google Scholar 

  8. Mussa A, Bertoerllo N, Porta F et al (2010) Prospective bone ultrasound patterns during childhood acute lymphoblastic leukemia treatment. Bone 46:1016–1020

    Article  PubMed  Google Scholar 

  9. Lequin MH, van der Sluis IM, van Rijn RR et al (2002) Bone mineral assessment with tibial ultrasonometry and dual-energy x-ray absorptiometry in long-term survivors of acute lymphoblastic leukemia in childhood. J Clin Densitom 5:167–173

    Article  CAS  PubMed  Google Scholar 

  10. Gonnelli S, Caffarelli C, Hayek J et al (2008) Bone ultrasonography at phalanxes in patients with Rett syndrome: a 3-year longitudinal study. Bone 42:737–742

  11. Sani FM, Sarji SA, Bilgen M (2011) Quantitative ultrasound measurement of the calcaneus in southeast Asian children with thalassemia. J Ultrasound Med 30:883–894

    PubMed  Google Scholar 

  12. World Health Organization (2004) WHO scientific group on the assessment of osteoporosis at primary health care level. Summary Meeting Report. Publishing WHO http://www.who.int/chp/topics/Osteoporosis.pdf. Accessed 18 June 2012

  13. Leonard MB, Propert KJ, Zemel BS et al (1999) Discrepancies in pediatric bone mineral density reference data: potential for misdiagnosis of osteopenia. J Pediatr 135:182–188

    Article  CAS  PubMed  Google Scholar 

  14. Baroncelli GI, Federico G, Bertelloni S et al (2003) Assessment of bone quality by quantitative ultrasound of proximal phalanges of the hand and fracture rate in children and adolescents with bone and mineral disorders. Int Pediatr Res Found 54:125–136

    Article  Google Scholar 

  15. Goh SY, Aragon JM, Lee YS et al (2011) Normative data for quantitative calcaneal ultrasound in Asian children. Ann Acad Med Singap 40:74–79

    PubMed  Google Scholar 

  16. Christoforidis A, Economou M, Papadopoulou E et al (2011) Comparative study of dual energy x-ray absorptiometry and quantitative ultrasonography with the use of biochemical markers of bone turnover in boys with haemophilia. Haemophilia 17:e217–e222

  17. Valerio G, del Puente A, Buono P et al (2004) Quantitative ultrasound of proximal phalanxes in patients with type 1 diabetes mellitus. Clin Pract 64:161–166

  18. Hartman C, Hino B, Lerner A et al (2004) Bone quantitative ultrasound and bone mineral density in children with celiac disease. J Pediatr Gastroenterol Nutr 39:504–510

    Article  PubMed  Google Scholar 

  19. Ashmeade T, Pereda L, Chen M et al (2007) Longitudinal measurement of bone status in preterm infants. J Pediatr Endocrinol Metab 20:415–424

    Article  PubMed  Google Scholar 

  20. Halaba ZP, Bursa J, Kosotowska U et al (2007) Phalangeal quantitative ultrasound measurements in former preterm children aged 9–11 years. Br J Radiol 80:401–405

    Article  CAS  PubMed  Google Scholar 

  21. Litmanovitz I, Dolfin T, Arnon S et al (2007) Assisted exercise and bone strength in preterm infants. Calcif Tissue Int 80:39–43

    Article  CAS  PubMed  Google Scholar 

  22. Rosso R, Vignolo M, Parodi A et al (2005) Bone quality in perinatally HIV-infected children: role of age, sex, growth, HIV infection, and antiretroviral therapy. AIDS Res Hum Retrovir 21:927–932

    Article  CAS  PubMed  Google Scholar 

  23. Tomlinson C, McDevitt H, Ashmed SF et al (2006) Longitudinal changes in bone health as assessed by the speed of sound in very low birth weight preterm infants. J Pediatr 148:450–455

    Article  CAS  PubMed  Google Scholar 

  24. Lam TP, Hung VWY, Yeung HY et al (2011) Abnormal bone quality in adolescent idiopathic scoliosis. Spine 36:1211–1217

    Article  PubMed  Google Scholar 

  25. Litmanovitz I, Dolfin T, Friendland O et al (2003) Early physical activity intervention prevents decrease of bone strength in very low birth weight infants. Pediatrics 112:15–19

    Article  PubMed  Google Scholar 

  26. McDevitt H, Tomlinson C, White MP et al (2007) Changes in quantitative ultrasound in infants born at less than 32 weeks’ gestation over the first 2 years of life: influence of clinical and biochemical changes. Calcif Tissue Int 81:263–269

    Article  CAS  PubMed  Google Scholar 

  27. Roggero P, Gianni ML, Orsi A et al (2007) Postnatal ‘speed of sound’ decline in preterm infants: an exploratory study. J Pediatr Gastroenterol Nutr 45:615–617

    Article  PubMed  Google Scholar 

  28. Di Iorgi N, Muratori T, Secco A et al (2008) Quantitative ultrasound detects bone impairment after bone marrow transplantation in children and adolescents affected by hematological diseases. BONE 43:177–182

    Article  PubMed  Google Scholar 

  29. Fielding KT, Nix DA, Bachrach LK (2003) Comparison of calcaneus ultrasound and dual x-ray absorptiometry in children at risk of osteopenia. J Clin Densitom 6:7–15

    Article  PubMed  Google Scholar 

  30. Cepollaro C, Gonnelli S, Bruni D et al (2001) Dual x-ray absorptiometry and bone ultrasonography in patients with Rett syndrome. Calcif Tissue Int 69:259–262

    Article  CAS  PubMed  Google Scholar 

  31. Oświęcimska J, Ziora K, Pluskiewicz W et al (2007) Skeletal status and laboratory investigations in adolescent girls with anorexia nervosa. Bone 41:103–110

    Article  PubMed  Google Scholar 

  32. Hartman C, Brik R, Tamir A et al (2004) Bone quantitative ultrasound and nutritional status in severely handicapped institutionalized children and adolescents. Clin Nutr 23:89–98

    Article  CAS  PubMed  Google Scholar 

  33. Bossuyt PM, Beitsma JB, Bruns DE et al (2003) The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration. Clin Chem 49:1

    Article  CAS  PubMed  Google Scholar 

  34. Whiting PF, Rutjes AWS, Westwood ME et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529–536

    Article  PubMed  Google Scholar 

  35. Chan MW, Leckie A, Xavier F et al (2013) A systematic review of MR imaging as a tool for evaluating haemophilic arthropathy in children. Haemophilia 19:e324–334

    Article  CAS  PubMed  Google Scholar 

  36. Altman D (1991) Practical statistics for medical research. Chapman and Hall, London, pp 404–408

    Google Scholar 

  37. Hanley JA, McNeil BJ (1983) A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148:839–843

    Article  CAS  PubMed  Google Scholar 

  38. Lachin JM (2004) The role of measurement reliability in clinical trials. Clin Trials 1:553–566

    Article  PubMed  Google Scholar 

  39. Harris RP, Helfand M, Woolf SH et al (2001) Current methods of the U.S. preventive services task force: a review of the process. Am J Prev Med 20:21–35

    Article  CAS  PubMed  Google Scholar 

  40. Altuncu E, Akman I, Yurdakul Z et al (2007) Quantitative ultrasound and biochemical parameters for the assessment of osteopenia in preterm infants. J Matern Fetal Neonat Med 20:401–405

    Article  CAS  Google Scholar 

  41. Gianni ML, Mora S, Roggero P et al (2007) Quantitative ultrasound and dual-energy x ray absorptiometry in bone status assessment of ex-preterm infants. Arch Dis Child: Fetal Neonatal Edition 93:F146–F147

    Article  PubMed  Google Scholar 

  42. Pietkiewicz EJ, Kubat AS, Szewczyk BZ et al (2010) Skeletal status at diagnosis in children with hematologic malignancy — pilot study. Adv in Clin Exp Med 19:531–535

  43. Mora S, Giacomet V, Viganò A et al (2012) Exposure to antiretroviral agents during pregnancy does not alter bone status in infants. Bone 50:255–258

    Article  CAS  PubMed  Google Scholar 

  44. Mussa A, Repici M, Fiore L et al (2010) Bone quantitative ultrasound in congenital and acquired childhood multiple pituitary failure. Ultrasound Med Bio 36:726–732

    Article  Google Scholar 

  45. Nelson HD, Haney EM, Dana T et al (2010) Screening for osteoporosis: an update for the U.S. preventive services task force. Ann Intern Med 153:99–111

    Article  PubMed  Google Scholar 

  46. Bauer DC, Glüer CC, Cauley JA et al (1997) Broadband ultrasound attenuation predicts fractures strongly and independently of densitometry in older women: a prospective study. study of osteoporotic fractures research group. Arch Intern Med 157:629–634

  47. Khaw KT, Reeve J, Luben R et al (2004) Prediction of total and hip fracture risk in men and women by quantitative ultrasound of the calcaneus: EPIC-Norfolk prospective population study. Lancet 363:197–202

    Article  PubMed  Google Scholar 

  48. Husted JA, Cook RJ, Farewell VT et al (2000) Methods for assessing responsiveness: a critical review and recommendations. J Clin Epidemiol 53:459–468

    Article  CAS  PubMed  Google Scholar 

Appendix references

  1. Cheung AM, Detsky AS (2008) Osteoporosis and fractures: missing the bridge? J Am Med Assoc 299:1468–1470

    Article  CAS  Google Scholar 

  2. National Institutes of Health (2000) Osteoporosis prevention, diagnosis, and therapy. NIH Consens Statement 17:1–36

    Google Scholar 

  3. Turner CH, Burr DB (1993) Basic biomechanical measurements of bone: a tutorial. Bone 14:595–608

    Article  CAS  PubMed  Google Scholar 

  4. MacNeil JA, Boyd SK (2007) Accuracy of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys 29:1096–1105

    Article  PubMed  Google Scholar 

  5. Fletcher RH, Fletcher SW (2005) Clinical epidemiology: the essentials, 4th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

Download references

Acknowledgments

This study was presented as a Scientific Poster at the 2013 Society for Pediatric Radiology Scientific Annual Meeting in San Antonio, TX.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea S. Doria.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1

(DOCX 198 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K.C., Wang, K.C., Amirabadi, A. et al. Evidence-based outcomes on diagnostic accuracy of quantitative ultrasound for assessment of pediatric osteoporosis — a systematic review. Pediatr Radiol 44, 1573–1587 (2014). https://doi.org/10.1007/s00247-014-3041-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-014-3041-x

Keywords

Navigation