Skip to main content
Log in

Differences by Altitude in the Frequency of Congenital Heart Defects in Colombia

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

More evidence is needed that links the diagnosis of different congenital heart diseases (CHD) identified after birth, with intermediate altitudes above sea level in geographically and ethnically diverse populations. Our aim was to estimate relative frequencies of CHD diagnosis by altitude and gender in the pediatric population of 12 cities in Colombia. This was a cross-sectional study based on the information collected between 2008 and 2013 in Colombia, during annual congenital heart disease (CHD) case detection campaigns in the post-natal period. All children underwent physical examination, pulse-oximetry, and echocardiography. The odds ratio (OR) was used as the summary statistic to assess associations with altitude in the relative frequency of CHD diagnosis. Data from 5900 children who attended the campaigns were evaluated (54.3 % male), out of which 3309 (56.1 %) were diagnosed with CHD. There were statistically significant differences in the relative distribution of the different CHD by city altitude and gender (p < 0.0001). When compared with sea level, altitudes between 1285 and 3000 m above sea level were associated with increased Patent Ductus Arteriosus (PDA) (ORmh 1.68, 95 % CI 1.34–2.09; p < 0.0001) and left ventricular outflow tract obstruction (LVOTO) diagnoses (ORmh 2.06, 95 % CI 1.63–2.61; p < 0.0001), while the opposite was true for right ventricular outflow tract (RVOTO) diagnosis (OR 0.60; 95 % CI 0.49–0.74, p < 0.0001). These associations were not modified by gender differences. In a geographically and ethnically diverse population, altitudes between 1285 and 3000 m above sea level carried an independent and clinically important excess diagnostic risk of PDA and of LVOTO, when compared to all other CHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CHD:

Congenital heart disease

VSD:

Ventricular septal defect

RVOTO:

Right ventricular outflow track obstruction

ASD:

Auricular septal defect

PDA:

Patent Ductus Arteriosus

LVOTO:

Left ventricular outflow track obstruction

m.a.s.l:

Meters above sea level

kg:

Kilograms

cms:

Centimeters

OR:

Odds ratio

References

  1. Richards AA, Garg V (2010) Genetics of congenital heart disease. Curr Cardiol Rev 6(2):91–97. doi:10.2174/157340310791162703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nora JJ (1968) Multifactorial inheritance hypothesis for the etiology of congenital heart diseases: the genetic-environmental interaction. Circulation 38:604–617. doi:10.1161/01.CIR.38.3.604

    Article  CAS  PubMed  Google Scholar 

  3. Van der Linde D, Konings EEM, Maarten A, Slager MA et al (2011) Birth prevalence of congenital heart disease worldwide. A systematic review and meta-analysis. J Am Coll Cardiol 58:2241–2247. doi:10.1016/j.jacc.2011.08.025

    Article  PubMed  Google Scholar 

  4. Hoffman JIE (2013) The global burden of congenital heart disease. Cardiovasc J Afr 24:141–145. doi:10.5830/CVJA-2013-028

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pierpont ME, Basson CT, Benson DW Jr et al (2007) Genetic basis for congenital heart defects: current knowledge. A scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation 115:3015–3038. doi:10.1161/CIRCULATIONAHA.106.183056

    Article  PubMed  Google Scholar 

  6. De la Cruz MV, Muñoz-Castellanos L, Nadal-Ginard B (1971) Extrinsic factors in the genesis of congenital heart disease. Br Heart J 33:203–213

    Article  PubMed  PubMed Central  Google Scholar 

  7. Levey A, Glickstein JS, Kleinman CS et al (2010) The impact of prenatal diagnosis of complex congenital heart disease on neonatal outcomes. Pediatr Cardiol 31:587–597. doi:10.1007/s00246-010-9648-2

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sanchez Cascos A, García Sagredo JM (1975) Genetics of patent ductus arteriosus. Basic Res Cardiol 70:456–466. doi:10.1007/BF01914341

    Article  Google Scholar 

  9. Penaloza D, Sime F, Ruiz L (2008) Pulmonary hemodynamics in children living at high altitudes. High Alt Med Biol 9(3):199–207. doi:10.1089/ham.2008.1004

    Article  PubMed  Google Scholar 

  10. Thébaud B, Michelakis ED, Wu XC et al (2004) Oxygen-sensitive Kv channel gene transfer confers oxygen responsiveness to preterm rabbit and remodeled human ductus arteriosus: implications for infants with patent ductus arteriosus. Circulation 110:1372–1379. doi:10.1161/01.CIR.0000141292.28616.65

    Article  CAS  PubMed  Google Scholar 

  11. Dexter L (1952) Congenital defects of the heart at high altitude. N Engl J Med 247:851–852. doi:10.1056/NEJM195211272472208

    Article  CAS  PubMed  Google Scholar 

  12. Chavez I, Espino-Vela J, Limon R, Dorbecker N (1953) La persistencia del conducto arterial: estudio de 200 casos. Arch Inst Cardiol Mex 23:687

    CAS  PubMed  Google Scholar 

  13. Gamarra Durana A (1973) Congenital heart diseases at altitude. Arch Inst Cardiol Mex 43:230–237

    CAS  PubMed  Google Scholar 

  14. Miao CY, Zuberbuhler JS, Zuberbuhler JR (1988) Prevalence of congenital cardiac anomalies at high altitude. JACC 12(1):224–228. doi:10.1016/0735-1097(88)90378-6

    Article  CAS  PubMed  Google Scholar 

  15. Qiu-hong C, Xiao-qin W, Sheng-gui QI (2008) Cross-sectional study of congenital heart disease among Tibetan children aged from 4 to 18 years at different altitudes in Qinghai Province. Chin Med J-Peking 121(24):2469–2472

    Google Scholar 

  16. Zheng JY, Tian HT, Zhu ZM (2013) Prevalence of symptomatic congenital heart disease in Tibetan school children. Am J Cardiol 112(9):1468–1470. doi:10.1016/j.amjcard.2013.07.028

    Article  PubMed  Google Scholar 

  17. Alzamora-castro V, Battilana G, Abugattas R, Sialer S (1960) Patent ductus arteriosus and high altitude. Am J Cardiol 5(6):761–763. doi:10.1016/0002-9149(60)90052-7

    Article  CAS  PubMed  Google Scholar 

  18. Penaloza D, Arias-Stella J, Sime F, Recavarren S, Marticorena E (1964) The heart and pulmonary circulation in children at high altitudes: physiological, anatomical and clinical observations. Pediatrics 34(4):568–582

    CAS  PubMed  Google Scholar 

  19. Chen QH, Liu FY, Wang XQ, Qi GR, Liu PF, Jin XH, Lu L, Zhao GQ, Qi SG (2009) A cross-sectional study of congenital heart disease among children aged from 4 to 18 years at different altitudes in Qinghai province, China. Zhonghua Liu Xing Bing Xue Za Zhi 30(12):1248–1251

    PubMed  Google Scholar 

  20. DANE (2005) Departamento administrativo nacional de estadistica reloj poblacional. http://www.dane.gov.co/index.php/esp/poblacion-y-registros-vitales/censos/censo-2005. Accessed 26 Dec 2015

  21. Organización de Estados Iberoamericanos para la Educación la Ciencia y la Cultura. Informe del sistema nacional de cultura. http://www.sinic.gov.co/oei/paginas/informe/informe_24.asp. Accessed 26 Dec 2015

  22. Yunis JJ, Acevedo LE, Campo DS, Yunis EJ (2013) Geno-geographic origin of Y-specific STR haplotypes in a sample of Caucasian-Mestizo and African-descent male individuals from Colombia. Biomédica 33(3):459–467. doi:10.7705/biomedica.v33i3.80710.7705/biomedica.v33i3.807

    Article  PubMed  Google Scholar 

  23. Secretaría de Cultura, Recreación y Deporte (2005). Alcaldia Mayor de Bogotá. http://www.culturarecreacionydeporte.gov.co/areas-de-trabajo/practicas-culturales/grupos-etnicos. Accessed 26 Dec 2015

  24. Strickland MJ, Klein M, Correa A et al (2009) Ambient air pollution and cardiovascular malformations in Atlanta, Georgia, 1986–2003. Am J Epidemiol 169:1004–1014. doi:10.1093/aje/kwp011

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hoffman JIE, Kaplan S (2002) The incidence of congenital heart disease. J Am Coll Cardiol 39(12):1890–1900. doi:10.1016/S0735-1097(02)01886-7

    Article  PubMed  Google Scholar 

  26. The Society of Thoracic Surgeons (2013) Congenital heart surgery database data collection form version 3.22 http://www.sts.org/sts-national-database/data-managers/congenital-heart-surgery-database/data-collection/sts-congenital.2013. Accessed 21 Jan 2015

  27. Kleinbaun D, Kupper LL, Morgenstern H (1982) Epidemiologic research. Van Nostrand Reinhold, New York

    Google Scholar 

  28. Reller MD, Strickland MJ, Riehle-Colarusso T, Mahle WT, Correa A (2008) Prevalence of congenital heart defects in metropolitan Atlanta, 1998–2005. J Pediatr 153(6):807–813. doi:10.1016/j.jpeds.2008.05.059

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bishop T, Ratcliffe PJ (2015) HIF hydroxylase pathways in cardiovascular physiology and medicine. Circ Res 117:65–79. doi:10.1161/CIRCRESAHA.117.305109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McBride KL, Pignatelli R, Lewin M et al (2005) Inheritance analysis of congenital left ventricular outflow tract obstruction malformations. AmJ Med Genet 134A(2):180–186. doi:10.1002/ajmg.a.30602

    Article  Google Scholar 

  31. Ma LG, Zhao J, Ren ZP et al (2014) Spatial patterns of the congenital heart disease prevalence among 0- to 14-year-old children in Sichuan Basin, P. R China, from 2004 to 2009. BMC Public Health 14:595–607. doi:10.1186/1471-2458-14-595

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like thank all collaborators in the different Colombian cities that donate their precious time for the CHD case detection campaigns and who have maintained the conviction of their beneficial impact on the affected families. We would like to thank all the personnel of the Departments of Social Responsibility and Pediatric Cardiology at FCI-IC, as well as all pediatric volunteers who travel every year to the different cities to cooperate with the campaigns.

Funding Sources

This study was possible thanks to the activities of Fundación Cardioinfantil´s social campaign program “Regale una vida”, and to funding to support research centers of excellence by the Administrative Department of Science, Technology and Innovation (COLCIENCIAS) of the Colombian Government, Grant 725-2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo J. Dennis.

Ethics declarations

Conflict of interest

None of the authors disclose any conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García, A., Moreno, K., Ronderos, M. et al. Differences by Altitude in the Frequency of Congenital Heart Defects in Colombia. Pediatr Cardiol 37, 1507–1515 (2016). https://doi.org/10.1007/s00246-016-1464-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-016-1464-x

Keywords

Navigation