Skip to main content
Log in

Trace Elements and Polycyclic Aromatic Hydrocarbons Variation Along the Guang-Shen Expressway Before and After the 2016 Qingming Festival in Guangzhou

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

PM2.5 samples (particles with aerodynamic diameter < 2.5 μm) were collected along the Guang-Shen expressway around the Qingming Festival, one of the most congested periods in China, which started from April 2–4, in 2016. Twenty-five trace elements and 16 priority polycyclic aromatic hydrocarbons (PAHs) of the samples were analyzed. Their major sources at different periods were identified. The concentrations of PAHs distinctly increased with growing traffic flow 2 days before the Qingming Festival (March 31th and April 1st), decreased gradually on the first 2 days of the 3-day festival (April 2nd and 3rd) and rose again on the last day (April 4th). The proportion changing of higher molecular weight containing 5- and 6-ring PAHs (HMW PAHs) closely related to the traffic flow variation were consistent with the concentration variation of PAHs during the experimental period. Indicators of gasoline/diesel engines emission, i.e., Mo, Co, Mn, and Pb showed similar concentration variation with PAHs. The concentrations of trace elements, mainly derived from wear instead of combustion process, such as Cu, Zn, Ti, and Sb, raised significantly during the rainy days. Incremental lifetime cancer risk (ILCR) values were calculated to evaluate the health risk caused by PAH around the Qingming Festival. The ILCR values increased by 3–10 times 2 days before and on the last day of the festival comparing with other days, as a result of traffic related sources, including engine emission and wearing of tires. It concluded by recommending the necessity of traffic diversion to alleviate the health risk to drivers and nearby residents during important festivals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alharbi B, Shareef MM, Husain T (2015) Study of chemical characteristics of particulate matter concentrations in Riyadh, Saudi Arabia. Atmos Pollut Res 6:88–98

    Article  CAS  Google Scholar 

  • Alves CA, Oliveira C, Martins N, Mirante F, Caseiro A, Pio C, Matos M, Silva HF, Oliveira C, Camoes F (2016) Road tunnel, roadside, and urban background measurements of aliphatic compounds in size-segregated particulate matter. Atmos Res 168:139–148

    Article  CAS  Google Scholar 

  • Aryal RK, Furumai H, Nakajima F, Boller M (2006) Characteristics of particle-associated PAHs in a first flush of a highway runoff. Water Sci Technol 53:245–251

    Article  CAS  Google Scholar 

  • Atkinson R, Kang S, Anderson H, Mills I, Walton H (2014) Epidemiological time series studies of PM2.5 and daily mortality and hospital admissions: a systematic review and meta-analysis. Thorax 69:660–665

    Article  CAS  Google Scholar 

  • Bari MA, Kindzierski WB, Wheeler AJ, Heroux ME, Wallace LA (2015) Source apportionment of indoor and outdoor volatile organic compounds at homes in Edmonton, Canada. Build Environ 90:114–124

    Article  Google Scholar 

  • Bi XH, Sheng GY, Peng P, Chen YJ, Zhang ZQ, Fu JM (2003) Distribution of particulate- and vapor-phase n-alkanes and polycyclic aromatic hydrocarbons in urban atmosphere of Guangzhou, China. Atmos Environ 37:289–298

    Article  CAS  Google Scholar 

  • Birgul A, Tasdemir Y (2015) Concentrations, gas-particle partitioning, and seasonal variations of polycyclic aromatic hydrocarbons at four sites in Turkey. Arch Environ Contam Toxicol 68:46–63

    Article  CAS  Google Scholar 

  • Boonyatumanond R, Murakami M, Wattayakorn G, Togo A, Takada H (2007) Sources of polycyclic aromatic hydrocarbons (PAHs) in street dust in a tropical Asian megacity, Bangkok, Thailand. Sci Total Environ 384:420–432

    Article  CAS  Google Scholar 

  • Bukowiecki N, Lienemann P, Hill M, Furger M, Richard A, Amato F, Prevot ASH, Baltensperger U, Buchmann B, Gehrig R (2010) PM10 emission factors for non-exhaust particles generated by road traffic in an urban street canyon and along a freeway in Switzerland. Atmos Environ 44:2330–2340

    Article  CAS  Google Scholar 

  • Chen HZ, Gong CS, Li WL, Li XK, Peng XY, Zhan QJ (2010) Characteristic and evaluation of soil pollution by heavy metal in different functional zones of Guangzhou. J Environ Health 27:700–703

    Google Scholar 

  • Chen HX, Li K, Li M, Yang K, Lu F, Cheng XM (2014) Geochemical background and baseline value of chemical elements in urban soil in China. Earth Sci Front 21:265–306

    Google Scholar 

  • Chen DQ, Xie ZY, Zhang YJ, Luo XL, Guo QR, Yang JJ, Liang YJ (2016a) Source apportionment of soil heavy metals in Guangzhou based on the PCA/APCS model and geostatistics. Ecol Environ Sci 25:1014–1022

    Google Scholar 

  • Chen JG, Zhou SH, Liu L (2016b) Estimating the effect of traffic congestion on accessibility to emergency medical care services: take Guangzhou as an example. Prog Phys Geogr 35:431–439

    Article  Google Scholar 

  • Cheng YH, Lin YL, Liu CC (2008) Levels of PM10 and PM2.5 in Taipei rapid transit system. Atmos Environ 42:7242–7249

    Article  CAS  Google Scholar 

  • Cheng Y, Lee SC, Gu ZL, Ho KF, Zhang YW, Huang Y, Chow JC, Watson JG, Cao JJ, Zhang RJ (2015) PM2.5 and PM10-2.5 chemical composition and source apportionment near a Hong Kong roadway. Particuology 18:96–104

    Article  CAS  Google Scholar 

  • China Ministry of Environmental Protection (2012) National ambient air quality standards, GB 3095-2012. China MEP, Beijing, pp 1–6

    Google Scholar 

  • Cook AD, Weinstein P, Centeno JA (2005) Health effects of natural dust. Biol Trace Elem Res 103:1–15

    Article  CAS  Google Scholar 

  • Cui HY, Chen WH, Dai W, Liu H, Wang XM, He KB (2015) Source apportionment of PM2.5 in Guangzhou combining observation data analysis and chemical transport model simulation. Atmos Environ 116:262–271

    Article  CAS  Google Scholar 

  • Dai DD, Zhou CS, Ye CD (2016) Spatial-temporal characteristics and factors influencing commuting activities of middle-class residents in Guangzhou city, China. Chin Geogr Sci 26:410–428

    Article  Google Scholar 

  • Ding X, Wang XM, Zheng M (2011) The influence of temperature and aerosol acidity on biogenic secondary organic aerosol tracers: observations at a rural site in the central Pearl River Delta region, South China. Atmos Environ 45:1303–1311

    Article  CAS  Google Scholar 

  • Evci YM, Esen F, Tasdemir Y (2016) Monitoring of long-term outdoor concentrations of PAHs with passive air samplers and comparison with meteorological data. Arch Environ Contam Toxicol 71:246–256

    Article  CAS  Google Scholar 

  • Gao B, Guo H, Wang XM, Zhao XY, Ling ZH, Zhang Z, Liu TY (2012) Polycyclic aromatic hydrocarbons in PM2.5 in Guangzhou, southern China: spatiotemporal patterns and emission sources. J Hazard Mater 239:78–87

    Article  CAS  Google Scholar 

  • Guo H, Ding AJ, So KL, Ayoko G, Li YS, Hung WT (2009) Receptor modeling of source apportionment of Hong Kong aerosols and the implication of urban and regional contribution. Atmos Environ 43:1159–1169

    Article  CAS  Google Scholar 

  • Harrison RM, Tilling R, Romero MSC, Harrad S, Jarvis K (2003) A study of trace metals and polycyclic aromatic hydrocarbons in the roadside environment. Atmos Environ 37:2391–2402

    Article  CAS  Google Scholar 

  • Houston D, Wu J, Yang D, Jaimes G (2013) Particle-bound polycyclic aromatic hydrocarbon concentrations in transportation microenvironments. Atmos Environ 71:148–157

    Article  CAS  Google Scholar 

  • Iijima A, Sato K, Yano K, Tago H, Kato M, Kimura H, Furuta N (2007) Particle size and composition distribution analysis of automotive brake abrasion dusts for the evaluation of antimony sources of airborne particulate matter. Atmos Environ 41:4908–4919

    Article  CAS  Google Scholar 

  • Islam MN, Jo YT, Chung SY, Park JH (2018) Assessment of polycyclic aromatic hydrocarbons in school playground soils in urban Gwangju, South Korea. Arch Environ Contam Toxicol 74:431–441

    Article  CAS  Google Scholar 

  • Jadoon WA, Khpalwak W, Chidya RCG, Abdel-Dayem SMMA, Takeda K, Makhdoom MA, Sakugawa H (2018) Evaluation of levels, sources and health hazards of road-dust associated toxic metals in Jalalabad and Kabul Cities, Afghanistan. Arch Environ Contam Toxicol 74:32–45

    Article  CAS  Google Scholar 

  • Jamhari AA, Sahani M, Latif MT, Chan KM, Tan HS, Khan MF, Tahir NM (2014) Concentration and source identification of polycyclic aromatic hydrocarbons (PAHs) in PM10 of urban, industrial and semi-urban areas in Malaysia. Atmos Environ 86:16–27

    Article  CAS  Google Scholar 

  • Kam W, Delfino RJ, Schauer JJ, Sioutas C (2013) A comparative assessment of PM2.5 exposures in light-rail, subway, freeway, and surface street environments in Los Angeles and estimated lung cancer risk. Environ Sci Process Impacts 15:234–243

    Article  CAS  Google Scholar 

  • Karar K, Gupta AK (2006) Seasonal variations and chemical characterization of ambient PM10 at residential and industrial sites of an urban region of Kolkata (Calcutta), India. Atmos Res 81:36–53

    Article  CAS  Google Scholar 

  • Keshavarzifard M, Zakaria MP, Sharifi R (2017) Ecotoxicological and health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in short-neck clam (Paphia undulata) and contaminated sediments in Malacca Strait, Malaysia. Arch Environ Contam Toxicol 73:474–487

    Article  CAS  Google Scholar 

  • Kim BM, Lee SB, Kim JY, Kim SW, Seo J, Bae GN, Lee JY (2016) A multivariate receptor modeling study of air-borne particulate PAHs: regional contributions in a roadside environment. Chemosphere 144:1270–1279

    Article  CAS  Google Scholar 

  • Kong SF, Lu B, Ji YQ, Bai ZP, Xu YH, Liu Y, Jiang H (2012) Distribution and sources of polycyclic aromatic hydrocarbons in size differentiated re-suspended dust on building surfaces in an oilfield city, China. Atmos Environ 55:7–16

    Article  CAS  Google Scholar 

  • Kong SF, Li XX, Li L, Yin Y, Chen K, Yuan L, Zhang YJ, Shan YP, Ji YQ (2015) Variation of polycyclic aromatic hydrocarbons in atmospheric PM2.5 during winter haze period around 2014 Chinese Spring Festival at Nanjing: insights of source changes, air mass direction and firework particle injection. Sci Total Environ 520:59–72

    Article  CAS  Google Scholar 

  • Kulshrestha A, Satsangi PG, Masih J, Taneja A (2009) Metal concentration of PM2.5 and PM10 particles and seasonal variations in urban and rural environment of Agra, India. Sci Total Environ 407:6196–6204

    Article  CAS  Google Scholar 

  • Kuo CY, Lee HS, Lai JH (2006) Emission of polycyclic aromatic hydrocarbons and lead during Chinese mid-autumn festival. Sci Total Environ 366:233–241

    Article  CAS  Google Scholar 

  • Kwon JC, Lee JS, Jung MC (2012) Arsenic contamination in agricultural soils surrounding mining sites in relation to geology and mineralization types. Appl Geochem 27:1020–1026

    Article  CAS  Google Scholar 

  • Lai SC, Zhao Y, Ding AJ, Zhang YY, Song TL, Zheng JY, Ho KF, Lee SC, Zhong LJ (2016) Characterization of PM2.5 and the major chemical components during a 1-year campaign in rural Guangzhou, Southern China. Atmos Res 167:208–215

    Article  CAS  Google Scholar 

  • Lang YH, Li GL, Wang XM, Peng P, Bai J (2015) Combination of Unmix and positive matrix factorization model identifying contributions to carcinogenicity and mutagenicity for polycyclic aromatic hydrocarbons sources in Liaohe delta reed wetland soils, China. Chemosphere 120:431–437

    Article  CAS  Google Scholar 

  • Larsen RK, Baker JE (2003) Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods. Environ Sci Technol 39:1873–1881

    Article  CAS  Google Scholar 

  • Lawrence S, Sokhi R, Ravindra K, Mao HJ, Prain HD, Bull ID (2013) Source apportionment of traffic emissions of particulate matter using tunnel measurements. Atmos Environ 77:548–557

    Article  CAS  Google Scholar 

  • Lee CSL, Li XD, Zhang G, Li J, Ding AJ, Wang T (2007) Heavy metals and Pb isotopic composition of aerosols in urban and suburban areas of Hong Kong and Guangzhou, South China—evidence of the long-range transport of air contaminants. Atmos Environ 41:432–447

    Article  CAS  Google Scholar 

  • Li J, Zhang G, Li XD, Qi SH, Liu GQ, Peng XZ (2006) Source seasonality of polycyclic aromatic hydrocarbons (PAHs) in a subtropical city, Guangzhou, South China. Sci Total Environ 355:145–155

    Article  CAS  Google Scholar 

  • Li XZ, Yang Y, Xu X, Xu CQ, Hong JL (2015) Air pollution from polycyclic aromatic hydrocarbons generated by human activities and their health effects in China. J Clean Prod 112:1360–1367

    Article  CAS  Google Scholar 

  • Lin CC, Yang LS, Cheng YH (2016a) Ambient PM2.5, black carbon, and particle size-resolved number concentrations and the angstrom exponent value of aerosols during the firework display at the Lantern Festival in Southern Taiwan. Aerosol Air Qual Res 16:373–387

    Article  CAS  Google Scholar 

  • Lin H, Tao J, Du YD, Liu T, Qian ZM, Tian LW, Di Q, Rutherford S, Guo LC, Zeng WL, Xiao JP, Li X, He ZH, Xu YJ, Ma WJ (2016b) Particle size and chemical constituents of ambient particulate pollution associated with cardiovascular mortality in Guangzhou, China. Environ Pollut 208:758–766

    Article  CAS  Google Scholar 

  • Liu Y, Wang SY, Lohmann R, Yu N, Zhang CK, Gao Y, Zhao JF, Ma LM (2015) Source apportionment of gaseous and particulate PAHs from traffic emission using tunnel measurements in Shanghai, China. Atmos Environ 107:129–136

    Article  CAS  Google Scholar 

  • Lu Y, Jia CJ, Zhang GL, Zhao YG, Wilson MA (2016) Spatial distribution and source of potential toxic elements (PTEs) in urban soils of Guangzhou, China. Environ Earth Sci 75:329–336

    Article  CAS  Google Scholar 

  • Masiol M, Squizzato S, Ceccato D, Pavoni B (2015) The size distribution of chemical elements of atmospheric aerosol at a semi-rural coastal site in Venice (Italy). The role of atmospheric circulation. Chemosphere 119:400–406

    Article  CAS  Google Scholar 

  • Miyazaki Y, Kawamura K, Jung J, Furutani H, Uematsu M (2011) Latitudinal distributions of organic nitrogen and organic carbon in marine aerosols over the western North Pacific. Atmos Chem Phys 11:3037–3049

    Article  CAS  Google Scholar 

  • Oliveira C, Pio C, Caseiro A, Santos P, Nunes T, Mao HJ, Luahana L, Sokhi R (2010) Road traffic impact on urban atmospheric aerosol loading at Oporto, Portugal. Atmos Environ 44:3147–3158

    Article  CAS  Google Scholar 

  • Omar NYMJ, Mon TC, Rahman NA, Abas MRB (2006) Distributions and health risks of polycyclic aromatic hydrocarbons (PAHs) in atmospheric aerosols of Kuala Lumpur, Malaysia. Sci Total Environ 369:76–81

    Article  CAS  Google Scholar 

  • Peng RD, Bell ML, Geyh AS, McDermott A, Zeger SL, Samet JM, Dominici F (2009) Emergency admissions for cardiovascular and respiratory diseases and the chemical composition of fine particle air pollution. Environ Health Perspect 117:957–963

    Article  CAS  Google Scholar 

  • Peng X, Shi GL, Zheng J, Liu JY, Shi XR, Xu J, Feng YC (2016) Influence of quarry mining dust on PM2.5 in a city adjacent to a limestone quarry: seasonal characteristics and source contributions. Sci Total Environ 550:940–949

    Article  CAS  Google Scholar 

  • Re N, Kataoka VMF, Cardoso CAL, Alcantara GB, de Souza JBG (2015) Polycyclic aromatic hydrocarbon concentrations in gas and particle phases and source determination in atmospheric samples from a semiurban area of Dourados, Brazil. Arch Environ Contam Toxicol 69:69–80

    Article  CAS  Google Scholar 

  • Romagnoli P, Balducci C, Perilli M, Perreca E, Cecinato A (2016) Particulate PAHs and n-alkanes in the air over Southern and Eastern Mediterranean Sea. Chemosphere 159:516–525

    Article  CAS  Google Scholar 

  • Sahin UA, Polat G, Onat B (2016) Mass size distribution and source identification of particulate matter metal components at four urban sites and a background site of Istanbul. Environ Sci Pollut Res 23:11085–11099

    Article  CAS  Google Scholar 

  • Sarigiannis DA, Handakas EJ, Kermenidou M, Zarkadas I, Gotti A, Charisiadis P, Makris K, Manousakas M, Eleftheriadis K, Karakitsios SP (2017) Monitoring of air pollution levels related to Charilaos Trikoupis Bridge. Sci Total Environ 609:1451–1463

    Article  CAS  Google Scholar 

  • Schafer K, Elsasser M, Arteaga-Salas JM, Gu JW, Pitz M, Schnelle-Kreis J, Cyrys J, Emeis S, Prevot ASH, Zimmermann R (2016) Impact of meteorological conditions on airborne fine particle composition and secondary pollutant characteristics in urban area during winter-time. Meteorol Z 25:267–279

    Article  Google Scholar 

  • Shi GL, Liu GR, Tian YZ, Zhou XY, Peng X, Feng YC (2014) Chemical characteristic and toxicity assessment of particle associated PAHs for the short-term anthropogenic activity event: during the Chinese New Year’s Festival in 2013. Sci Total Environ 482:8–14

    Article  CAS  Google Scholar 

  • Sofowote UM, Mccarry BE, Marvin CH (2008) Source apportionment of PAH in Hamilton Harbour suspended sediments: comparison of two factor analysis methods. Environ Sci Technol 42:6007–6014

    Article  CAS  Google Scholar 

  • Soltani N, Keshavarzi B, Moore F, Tavakol T, Lahijanzadeh AR, Jaafarzadeh N, Kermani M (2015) Ecological and human health hazards of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in road dust of Isfahan metropolis, Iran. Sci Total Environ 505:712–723

    Article  CAS  Google Scholar 

  • Srivastava A, Gupta S, Jain VK (2009) Winter-time size distribution and source apportionment of total suspended particulate matter and associated metals in Delhi. Atmos Res 92:88–99

    Article  CAS  Google Scholar 

  • Sternbeck J, Sjödin A, Andréasson K (2002) Metal emissions from road traffic and the influence of resuspension—results from two tunnel studies. Atmos Environ 36:4735–4744

    Article  CAS  Google Scholar 

  • Tan JH, Duan JC, Zhen NJ, He KB, Hao JM (2016) Chemical characteristics and source of size-fractionated atmospheric particle in haze episode in Beijing. Atmos Res 167:24–33

    Article  CAS  Google Scholar 

  • Tao J, Zhang L, Ho K, Zhang R, Lin Z, Zhang Z, Lin M, Cao J, Liu S, Wang G (2014) Impact of PM2.5 chemical compositions on aerosol light scattering in Guangzhou—the largest megacity in South China. Atmos Res 135:48–58

    Article  CAS  Google Scholar 

  • US EPA (1984) Guidelines establishing test procedures for the analysis of pollutants under the clean water act: method 610. Polynuclear aromatic hydrocarbons. United States Environmental Protection Agency Federal Regulations, vol. 49(209, Part 136):43:34–52

  • US EPA (1991) Human health evaluation manual, supplemental guidance: “standard default exposure factors.” OSWER Directive 9285:6–03

  • US EPA (2001) Risk assessment guidance for superfund: volume III—part A, process for conducting probabilistic risk assessment. EPA 540-R-02-002. US Environmental Protection Agency, Washington

    Google Scholar 

  • US EPA (2008) Integrated science assessment for particulate matter (External review draft). US Environmental Protection Agency, Washington

    Google Scholar 

  • US EPA (2011) Exposure factors handbook: 2011 edition. EPA/600/R-090/052 F

  • Wang XH, Bi XH, Sheng GY, Fu JM (2006) Chemical composition and sources of PM10 and PM2.5 aerosols in Guangzhou, China. Environ Monit Assess 119:425–439

    Article  CAS  Google Scholar 

  • Wang Y, Li J, Cheng X, Lun XX, Sun DZ, Wang XZ (2014) Estimation of PM10 in the traffic-related atmosphere for three road types in Beijing and Guangzhou, China. J Environ Sci 26:197–204

    Article  Google Scholar 

  • Wang RD, Zou XY, Cheng H, Wu XX, Zhang CL, Kang LQ (2015) Spatial distribution and source apportionment of atmospheric dust fall at Beijing during spring of 2008-2009. Environ Sci Pollut Res 22:3547–3557

    Article  CAS  Google Scholar 

  • WHO (2006) Air quality guidelines: global update 2005. World Health Organization, Bonn

    Google Scholar 

  • Wiriya W, Prapamontol T, Chantara S (2013) PM10-bound polycyclic aromatic hydrocarbons in Chiang Mai (Thailand): seasonal variations, source identification, health risk assessment and their relationship to air-mass movement. Atmos Res 124:109–122

    Article  CAS  Google Scholar 

  • Wu FK, Yu Y, Sun J, Zhang JK, Wang J, Tang GQ, Wang YS (2016) Characteristics, source apportionment and reactivity of ambient volatile organic compounds at Dinghu Mountain in Guangdong Province, China. Sci Total Environ 548:347–359

    Article  CAS  Google Scholar 

  • Xiao YH, Liu SR, Tong FC, Kuang YW, Chen BF, Guo YD (2014) Characteristics and sources of metals in TSP and PM2.5 in an urban forest park at Guangzhou. Atmosphere 5:775–787

    Article  CAS  Google Scholar 

  • Xue XD, You D, Wu JH, Han B, Bai ZP, Tang NJ, Zhang LW (2014) Exposure measurement, risk assessment and source identification for exposure of traffic assistants to particle-bound PAHs in Tianjin, China. J Environ Sci 26:448–457

    Article  Google Scholar 

  • Yang B, Zhou LL, Xue ND, Li FS, Li YW, Vogt RD, Cong X, Yan YZ, Liu B (2013) Source apportionment of polycyclic aromatic hydrocarbons in soils of Huanghuai Plain, China: comparison of three receptor models. Sci Total Environ 443:31–39

    Article  CAS  Google Scholar 

  • Yang WL, Wang GC, Bi CJ (2017) Analysis of long-range transport effects on PM2.5 during a short severe haze in Beijing. China. Aerosol Air Qual Res 17:1610–1622

    Article  CAS  Google Scholar 

  • Yin J, Harrison RM, Chen Q, Rutter A, Schauer JJ (2010) Source apportionment of fine particles at urban background and rural sites in the UK atmosphere. Atmos Environ 44:841–851

    Article  CAS  Google Scholar 

  • Yu Y, Li YX, Li B, Shen ZY, Stenstrom MK (2016) Metal enrichment and lead isotope analysis for source apportionment in the urban dust and rural surface soil. Environ Pollut 216:764–772

    Article  CAS  Google Scholar 

  • Zhang SJ, Wu Y, Liu H, Wu XM, Zhou Y, Yao ZL, Fu LX, He KB, Hao JM (2013) Historical evaluation of vehicle emission control in Guangzhou based on a multi-year emission inventory. Atmos Environ 76:32–42

    Article  CAS  Google Scholar 

  • Zhang YJ, Tang LL, Yu HX, Wang Z, Sun YL, Qin W, Chen WT, Chen CH, Ding AJ, Wu J (2015) Chemical composition, sources and evolution processes of aerosol at an urban site in Yangtze River Delta, China during wintertime. Atmos Environ 123:339–349

    Article  CAS  Google Scholar 

  • Zhi YY, Li P, Shi JC, Zeng LZ, Wu LS (2016) Source identification and apportionment of soil cadmium in cropland of Eastern China: a combined approach of models and geographic information system. J Soils Sediments 16:467–475

    Article  CAS  Google Scholar 

  • Zhou F, Guo HC, Liu L (2007) Quantitative identification and source apportionment of anthropogenic heavy metals in marine sediment of Hong Kong. Environ Geol 53:295–305

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Key Technical Projects (Project No. 2016ZX05047-005) for the financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and Animal Rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1591 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., He, W., Wu, J. et al. Trace Elements and Polycyclic Aromatic Hydrocarbons Variation Along the Guang-Shen Expressway Before and After the 2016 Qingming Festival in Guangzhou. Arch Environ Contam Toxicol 76, 87–101 (2019). https://doi.org/10.1007/s00244-018-0582-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-018-0582-2

Navigation