Skip to main content

Advertisement

Log in

Changes in Sport Fish Mercury Concentrations from Food Web Shifts Suggest Partial Decoupling from Atmospheric Deposition in Two Colorado Reservoirs

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Partial decoupling of mercury (Hg) loading and observed Hg concentrations ([Hg]) in biotic and abiotic samples has been documented in aquatic systems. We studied two Colorado reservoirs to test whether shifts in prey for sport fish would lead to changes in [Hg] independent of external atmospheric Hg deposition. We compared sport fish total mercury concentrations ([T-Hg]) and macroinvertebrate (chironomids and crayfish) methylmercury concentrations ([MeHg]) before and after food web shifts occurred in both reservoirs. We also monitored wet atmospheric Hg deposition and sediment [T-Hg] and [MeHg] at each reservoir. We found rapid shifts in Hg bioaccumulation in each reservoir’s sport fish, and these changes could not be attributed to atmospheric Hg deposition. Our study shows that trends in atmospheric deposition, environmental samples (e.g., sediments), and samples of species at the low trophic levels (e.g., chironomids and crayfish) may not accurately reflect conditions that result in fish consumption advisories for high trophic level sport fish. We suggest that in the short-term, monitoring fish [Hg] is necessary to adequately protect human health because natural and anthropogenic perturbations to aquatic food-webs that affect [Hg] in sport fish will continue regardless of trends in atmospheric deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Blackwell BG, Brown ML, Willis DW (2000) Relative weight (Wr) status and current use in fisheries assessment and management. Rev Fish Sci 8:1–44

    Article  Google Scholar 

  • Bloom NS (1992) On the chemical form of mercury in edible fish and marine invertebrate tissue. Can J Fish Aquat Sci 49:1010–1017. doi:10.1139/f92-113

    Article  CAS  Google Scholar 

  • Bodaly RA, Rudd JWM, Fudge RJP, Kelly CA (1993) Mercury concentrations in fish related to size of remote Canadian Shield lakes. Can J Fish Aquat Sci 50:980–987

    Article  CAS  Google Scholar 

  • Brigham ME, Sandheinrich MB, Gay DA, Maki RP, Krabbenhoft DP, Wiener JG (2014) Lacustrine responses to decreasing wet mercury deposition rates—results from a case study in northern Minnesota. Environ Sci Technol 48:6115–6123. doi:10.1021/es500301a

    Article  CAS  Google Scholar 

  • Clements WH, Hickey CW, Kidd KA (2012) How do aquatic communities respond to contaminants? It depends on the ecological context. Environ Toxicol Chem 31:1932–1940. doi:10.1002/etc.1937

    Article  CAS  Google Scholar 

  • Coelho JP, Mieiro CL, Pereira E, Duarte AC, Pardal MA (2013) Mercury biomagnification in a contaminated estuary food web: effects of age and trophic position using stable isotope analyses. Mar Pollut Bull 69:110–115. doi:10.1016/j.marpolbul.2013.01.021

    Article  CAS  Google Scholar 

  • Cross FA, Evans DW, Barber RT (2015) Decadal declines of mercury in adult bluefish (1972–2011) from the Mid-Atlantic coast of the USA. Environ Sci Technol 49:9064–9072. doi:10.1021/acs.est.5b01953

    Article  CAS  Google Scholar 

  • Davies K (2014) Horsetooth Reservoir: fish survey and management data. Colorado Parks and Wildlife Report

  • Eagles-Smith CA, Suchanek TH, Colwell AE, Anderson NL, Moyle PB (2008) Changes in fish diets and food web mercury bioaccumulation induced by an invasive planktivorous fish. Ecol Appl 18:A213–A226. doi:10.1890/06-1415.1

    Article  Google Scholar 

  • Hammerschmidt CR, Fitzgerald WF (2006) Methylmercury in freshwater fish linked to atmospheric mercury deposition. Environ Sci Technol 40:7764–7770. doi:10.1021/es061480i

    Article  CAS  Google Scholar 

  • Harris RC, Rudd JWM, Amyot M, Babiarz CL, Beaty KG, Blanchfield PJ, Bodaly RA, Branfireun BA, Gilmour CC, Graydon JA, Heyes A, Hintelmann H, Hurley JP, Kelly CA, Krabbenhoft DP, Lindberg SE, Mason RP, Paterson MJ, Podemski CL, Robinson A, Sandilands KA, Southworth GR, Louis VLS, Tate MT (2007) Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition. Proc Natl Acad Sci USA 104:16586–16591. doi:10.1073/pnas.0704186104

    Article  CAS  Google Scholar 

  • James DA, Csargo IJ, Von Eschen A, Thul MD, Baker JM, Hayer CA, Howell J, Krause J, Letvin A, Chipps SR (2012) A generalized model for estimating the energy density of invertebrates. Freshw Sci 31:69–77. doi:10.1899/11-057.1

    Article  Google Scholar 

  • Johnson BM, Goettl JP (1999) Food web changes over fourteen years following introduction of rainbow smelt into a Colorado reservoir. N Am J Fish Manage 19:629–642

    Article  Google Scholar 

  • Johnson BM, Martinez PJ (2000) Trophic economics of lake trout management in reservoirs of differing productivity. N Am J Fish Manage 20:127–143

    Article  Google Scholar 

  • Johnson BM, Lepak JM, Wolff BA (2015) Effects of prey assemblage on mercury bioaccumulation in a piscivorous sport fish. Sci Total Environ 506:330–337. doi:10.1016/j.scitotenv.2014.10.101

    Article  Google Scholar 

  • Johnston TA, Leggett WC, Bodaly RA, Swanson HK (2003) Temporal changes in mercury bioaccumulation by predatory fishes of boreal lakes following the invasion of an exotic forage fish. Environ Toxicol Chem 22:2057–2062. doi:10.1897/02-265

    Article  CAS  Google Scholar 

  • Jones MS, Goettl JP, Flickinger SA (1994) Changes in walleye food habits and growth following a rainbow smelt introduction. N Am J Fish Manage 14:409–414

    Article  Google Scholar 

  • Kannan K, Smith RG, Lee RF, Windom HL, Heitmuller PT, Macauley JM, Summers JK (1998) Distribution of total mercury and methyl mercury in water, sediment, and fish from south Florida estuaries. Arch Environ Contam Toxicol 34:109–118

    Article  CAS  Google Scholar 

  • Kidd KA, Hesslein RH, Fudge RJP, Hallard KA (1995) The influence of trophic level as measured by delta-n-15 on mercury concentrations in freshwater organisms. Water Air Soil Pollut 80:1011–1015. doi:10.1007/Bf01189756

    Article  CAS  Google Scholar 

  • Lavoie RA, Hebert CE, Rail JF, Braune BM, Yumvihoze E, Hill LG, Lean DRS (2010) Trophic structure and mercury distribution in a Gulf of St. Lawrence (Canada) food web using stable isotope analysis. Sci Total Environ 408:5529–5539. doi:10.1016/j.scitotenv.2010.07.053

    Article  CAS  Google Scholar 

  • Lepak JM, Johnson BM (2010) Bioaccumulation of mercury in aquatic food webs: integrating research and management towards remediation. Colorado Parks and Wildlife Report

  • Lepak JM, Robinson JM, Kraft CE, Josephson DC (2009) Changes in mercury bioaccumulation in an apex predator in response to removal of an introduced competitor. Ecotoxicology 18:488–498. doi:10.1007/s10646-009-0306-5

    Article  CAS  Google Scholar 

  • Lepak JM, Hooten MB, Johnson BM (2012a) The influence of external subsidies on diet, growth and Hg concentrations of freshwater sport fish: implications for management and fish consumption advisories. Ecotoxicology 21:1878–1888. doi:10.1007/s10646-012-0921-4

    Article  CAS  Google Scholar 

  • Lepak JM, Kinzli KD, Fetherman ER, Pate WM, Hansen AG, Gardunio EI, Cathcart CN, Stacy WL, Underwood ZE, Brandt MM, Myrick CA, Johnson BM (2012b) Manipulation of growth to reduce mercury concentrations in sport fish on a whole-system scale. Can J Fish Aquat Sci 69:122–135. doi:10.1139/f2011-136

    Article  CAS  Google Scholar 

  • Mason RP, Lawrence AL (1999) Concentration, distribution, and bioavailability of mercury and methylmercury in sediments of Baltimore Harbor and Chesapeake Bay, Maryland, USA. Environ Toxicol Chem 18:2438–2447. doi:10.1897/1551-5028(1999)018<2438:Cdabom>2.3.Co;2

    CAS  Google Scholar 

  • Mergler D, Anderson HA, Chan LHM, Mahaffey KR, Murray M, Sakamoto M, Stern AH (2007) Methylmercury exposure and health effects in humans: a worldwide concern. Ambio 36:3–11

    Article  CAS  Google Scholar 

  • Mikac N, Niessen S, Ouddane B, Wartel M (1999) Speciation of mercury in sediments of the Seine estuary (France). Appl Organomet Chem 13:715–725

    Article  CAS  Google Scholar 

  • Momot WT (1995) Redefining the role of crayfish in aquatic ecosystems. Rev Fish Sci 3:33–63

    Article  Google Scholar 

  • Poste AE, Muir DCG, Guildford SJ, Hecky RE (2015) Bioaccumulation and biomagnification of mercury in African lakes: the importance of trophic status. Sci Total Environ 506:126–136. doi:10.1016/j.scitotenv.2014.10.094

    Article  Google Scholar 

  • Power M, Klein GM, Guiguer KRRA, Kwan MKH (2002) Mercury accumulation in the fish community of a sub-arctic lake in relation to trophic position and carbon sources. J Appl Ecol 39:819–830

    Article  CAS  Google Scholar 

  • Shade CW (2008) Automated simultaneous analysis of monomethyl and mercuric Hg in biotic samples by Hg-thiourea complex liquid chromatography following acidic thiourea leaching. Environ Sci Technol 42:6604–6610. doi:10.1021/es800187y

    Article  CAS  Google Scholar 

  • Sorensen JA, Glass GE, Schmidt KW, Huber JK, Rapp GR (1990) Airborne mercury deposition and watershed characteristics in relation to mercury concentrations in water, sediments, plankton, and fish of 80 northern Minnesota lakes. Environ Sci Technol 24:1716–1727. doi:10.1021/Es00081a015

    Article  CAS  Google Scholar 

  • Stein RA (1977) Selective predation, optimal foraging, and predator-prey interaction between fish and crayfish. Ecology 58:1237–1253. doi:10.2307/1935078

    Article  Google Scholar 

  • Suchanek TH, Eagles-Smith CA, Harner EJ (2008) Is Clear Lake methylmercury distribution decoupled from bulk mercury loading? Ecol Appl 18:A107–A127. doi:10.1890/06-1649.1

    Article  Google Scholar 

  • UNEP (2002) Global mercury assessment. United Nations Environmental Program http://www.uneporg/gc/gc22/Document/UNEP-GC22-INF3pdf. Accessed 16 Jan 2016

  • USEPA (2000) Guidance for assessing chemical contaminant data for use in fish advisories. US Environmental Protection Agency, Office of Water, EPA 823-B-00-007 1

  • USEPA (2009) Guidance for implementing the January 2001 methylmercury water quality criterion. EPA 823-R-09-002 US Environmental Protection Agency, Office of Water, Washington

  • Wiener JG, Knights BC, Sandheinrich MB, Jeremiason JD, Brigham ME, Engstrom DR, Woodruff LG, Cannon WF, Balogh SJ (2006) Mercury in soils, lakes, and fish in Voyageurs National Park (Minnesota): importance of atmospheric deposition and ecosystem factors. Environ Sci Technol 40:6261–6268. doi:10.1021/es060822h

    Article  CAS  Google Scholar 

  • Wright B (2010) Elkhead Reservoir: fish survey and management information. Colorado Parks and Wildlife Report

  • Wydoski RS, Bennett DH (1981) Forage species in lakes and reservoirs of the western United States. Trans Am Fish Soc 110:764–771. doi:10.1577/1548-8659(1981)110<764:fsilar>2.0.co;2

    Article  Google Scholar 

  • Zillioux EJ (2015) Mercury in fish: history, sources, pathways, effects, and indicator usage. In: Environmental indicators. Springer, Berlin, pp 743–766

Download references

Acknowledgements

Funding for this study came from the Colorado Department of Public Health and Environment, Water Quality Control Division, Nonpoint Source Program through a Clean Water Act Section 319 assistance Grant C9-99818610 from the U.S. Environmental Protection Agency. The authors thank Dr. Chris Shade and Nathan Brady of Quicksilver Scientific Laboratory for technical assistance and field support, respectively. They also thank Colorado Parks and Wildlife biologists, Kurt Davies and Kyle Battige, for field assistance, Bill Pate of the Colorado State University Fisheries Ecology Laboratory for field and laboratory support, William Clements of Colorado State University, and the anonymous reviewers from this journal for providing insightful critiques.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian A. Wolff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolff, B.A., Johnson, B.M. & Lepak, J.M. Changes in Sport Fish Mercury Concentrations from Food Web Shifts Suggest Partial Decoupling from Atmospheric Deposition in Two Colorado Reservoirs. Arch Environ Contam Toxicol 72, 167–177 (2017). https://doi.org/10.1007/s00244-016-0353-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-016-0353-x

Keywords

Navigation