Skip to main content
Log in

Assessment of Urinary Metabolite Excretion After Rat Acute Exposure to Perfluorooctanoic Acid and Other Peroxisomal Proliferators

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Perfluorooctanoic acid (PFOA) is a persistent environmental contaminant. Activation of the peroxisome proliferator activated receptor alpha (PPARα) resulting from exposure to PFOA has been extensively studied in rodents. However, marked differences in response to peroxisome proliferators prevent extrapolation of rodent PPARα activation to human health risks and additional molecular mechanisms may also be involved in the biological response to PFOA exposure. To further explore the potential involvement of such additional pathways, the effects of PFOA exposure on urinary metabolites were directly compared with those of other well-known PPARα agonists. Male rats were administered PFOA (10, 33, or 100 mg/kg/d), fenofibrate (100 mg/kg/d), or di(2-ethylhexyl)phthalate (100 mg/kg/d) by gavage for 3 consecutive days and allowed to recover for 4 days, and overnight urine was collected. Greater urinary output was observed exclusively in PFOA-treated rats as the total fraction of PFOA excreted in urine increased with the dose administered. Assessment of urinary metabolites (ascorbic acid, quinolinic acid, 8-hydroxy-2’-deoxyguanosine, and malondialdehyde) provided additional information on PFOA’s effects on hepatic glucuronic acid and tryptophan-nicotinamide adenine dinucleotide (NAD) pathways and on oxidative stress, whereas increased liver weight and palmitoyl-CoA oxidase activity indicative of PPARα activation and peroxisomal proliferation persisted up to day five after the last exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdellatif AG, Preat V, Vamecq J, Nilsson R, Roberfroid M (1990) Peroxisome proliferation and modulation of rat liver carcinogenesis by 2,4-dichlorophenoxyacetic acid, 2,4,5-trichlorophenoxyacetic acid, perfluorooctanoic acid and nafenopin. Carcinogenesis 11:1899–1902

    Article  CAS  Google Scholar 

  • Abdellatif A, Al-Tonsy AH, Awad ME, Roberfroid M, Khan MN (2003) Peroxisomal enzymes and 8-hydroxydeoxyguanosine in rat liver treated with perfluorooctanoic acid. Dis Markers 19:19–25

    Article  CAS  Google Scholar 

  • Agarwal R, Chase SD (2002) Rapid, fluorimetric-liquid chromatographic determination of malondialdehyde in biological samples. J Chromatogr B 775:121–126

    Article  CAS  Google Scholar 

  • Albrecht PP, Torsell NE, Krishnan P, Ehresman DJ, Frame SR, Chang SC et al (2013) A species difference in the peroxisome proliferator-activated receptor alpha-dependent response to the developmental effects of perfluorooctanoic acid. Toxicol Sci 131:568–582

    Article  CAS  Google Scholar 

  • Aranibar N, Bhaskaran V, Ott KH, Vassallo J, Nelson D, Lecureux L et al (2009) Modulation of ascorbic acid metabolism by cytochrome P450 induction revealed by metabonomics and transcriptional profiling. Magn Reson Chem 47(Suppl 1):S12–S19

    Article  CAS  Google Scholar 

  • Bjork JA, Wallace KB (2009) Structure-activity relationships and human relevance for perfluoroalkyl acid-induced transcriptional activation of peroxisome proliferation in liver cell cultures. Toxicol Sci 111:89–99

    Article  CAS  Google Scholar 

  • Bjork JA, Butenhoff JL, Wallace KB (2011) Multiplicity of nuclear receptor activation by PFOA and PFOS in primary human and rodent hepatocytes. Toxicology 288:8–17

    Article  CAS  Google Scholar 

  • Burchell B, Weatherill P (1981) 4-Nitrophenol UDP glucuronyltransferase (rat liver). In: Jacobi JB (ed) Methods in enzymology. Academic Press, New York, NY, pp 169–177

    Google Scholar 

  • Burke MD, Thompson S, Elcombe CR, Halpert J, Haaparanta T, Mayer RT (1985) Ethoxy-, pentoxy- and benzyloxyphenoxazones and homologues: a series of substrates to distinguish between different induced cytochromes P-450. Biochem Pharmacol 34:3337–3345

    Article  CAS  Google Scholar 

  • Butt CM, Berger U, Bossi R, Tomy GT (2010) Levels and trends of poly- and perfluorinated compounds in the arctic environment. Sci Total Environ 408:2936–2965

    Article  CAS  Google Scholar 

  • Cohen SM (2005) Effects of PPARgamma and combined agonists on the urinary tract of rats and other species. Toxicol Sci 87:322–327

    Article  CAS  Google Scholar 

  • Cui L, Zhou QF, Liao CY, Fu JJ, Jiang GB (2009) Studies on the toxicological effects of PFOA and PFOS on rats using histological observation and chemical analysis. Arch Environ Contam Toxicol 56:338–349

    Article  CAS  Google Scholar 

  • Cui L, Liao CY, Zhou QF, Xia TM, Yun ZJ, Jiang GB (2010) Excretion of PFOA and PFOS in male rats during a subchronic exposure. Arch Environ Contam Toxicol 58:205–213

    Article  CAS  Google Scholar 

  • Delaney J, Hodson MP, Thakkar H, Connor SC, Sweatman BC, Kenny SP et al (2005) Tryptophan-NAD+ pathway metabolites as putative biomarkers and predictors of peroxisome proliferation. Arch Toxicol 79:208–223

    Article  CAS  Google Scholar 

  • DeWitt JC, Peden-Adams MM, Keller JM, Germolec DR (2012) Immunotoxicity of perfluorinated compounds: recent developments. Toxicol Pathol 40:300–311

    Article  CAS  Google Scholar 

  • Eason CT, Bonner FW, Parke DV (1990) The importance of pharmacokinetic and receptor studies in drug safety evaluation. Regul Toxicol Pharmacol 11:288–307

    Article  CAS  Google Scholar 

  • Enomoto A, Kimura H, Chairoungdua A, Shigeta Y, Jutabha P, Cha SH et al (2002) Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 417:447–452

    CAS  Google Scholar 

  • Fukuwatari T, Ohsaki S, Fukuoka S, Sasaki R, Shibata K (2004) Phthalate esters enhance quinolinate production by inhibiting alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase (ACMSD), a key enzyme of the tryptophan pathway. Toxicol Sci 81:302–308

    Article  CAS  Google Scholar 

  • Gentry PR, Clewell HJ III, Clewell R, Campbell J, Van LC, Shipp AM (2011) Challenges in the application of quantitative approaches in risk assessment: a case study with di-(2-ethylhexyl)phthalate. Crit Rev Toxicol 41(Suppl2):1–72

    Article  CAS  Google Scholar 

  • Goecke CM, Jarnot BM, Reo NV (1992) A comparative toxicological investigation of perfluorocarboxylic acids in rats by fluorine-19 NMR spectroscopy. Chem Res Toxicol 5:512–519

    Article  CAS  Google Scholar 

  • Gonzalez FJ, Shah YM (2008) PPARalpha: mechanism of species differences and hepatocarcinogenesis of peroxisome proliferators. Toxicology 246:2–8

    Article  CAS  Google Scholar 

  • Guyton KZ, Chiu WA, Bateson TF, Jinot J, Scott CS, Brown RC et al (2009) A reexamination of the PPAR-alpha activation mode of action as a basis for assessing human cancer risks of environmental contaminants. Environ Health Perspect 117:1664–1672

    CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  Google Scholar 

  • Hanhijarvi H, Ophaug RH, Singer L (1982) The sex-related difference in perfluorooctanoate excretion in the rat. Proc Soc Exp Biol Med 171:50–55

    Article  CAS  Google Scholar 

  • Hanhijarvi H, Ylinen M, Kojo A, Kosma VM (1987) Elimination and toxicity of perfluorooctanoic acid during subchronic administration in the Wistar rat. Pharmacol Toxicol 61:66–68

    Article  CAS  Google Scholar 

  • Harada KH, Yang HR, Moon CS, Hung NN, Hitomi T, Inoue K et al (2010) Levels of perfluorooctane sulfonate and perfluorooctanoic acid in female serum samples from Japan in 2008, Korea in 1994–2008 and Vietnam in 2007–2008. Chemosphere 79:314–319

    Article  CAS  Google Scholar 

  • Henninger C, Clouet P, Cao DH, Pascal M, Bezard J (1987) Effects of fenofibrate treatment on fatty acid oxidation in liver mitochondria of obese Zucker rats. Biochem Pharmacol 36:3231–3236

    Article  CAS  Google Scholar 

  • Houde M, Martin JW, Letcher RJ, Solomon KR, Muir DC (2006) Biological monitoring of polyfluoroalkyl substances: a review. Environ Sci Technol 40:3463–3473

    Article  CAS  Google Scholar 

  • Jayaraman S, Kumar KR, Rao MV (1988) Di-2-ethylhexylphthalate induced peroxidative stress in rat liver. Bull Environ Contam Toxicol 41:360–364

    Article  CAS  Google Scholar 

  • Kawashima Y, Suzuki S, Kozuka H, Sato M, Suzuki Y (1994) Effects of prolonged administration of perfluorooctanoic acid on hepatic activities of enzymes which detoxify peroxide and xenobiotic in the rat. Toxicology 93:85–97

    Article  CAS  Google Scholar 

  • Kawashima Y, Kobayashi H, Miura H, Kozuka H (1995) Characterization of hepatic responses of rat to administration of perfluorooctanoic and perfluorodecanoic acids at low levels. Toxicology 99:169–178

    Article  CAS  Google Scholar 

  • Kennedy GL Jr, Butenhoff JL, Olsen GW, O’Connor JC, Seacat AM, Perkins RG et al (2004) The toxicology of perfluorooctanoate. Crit Rev Toxicol 34:351–384

    Article  CAS  Google Scholar 

  • Keranen J, Ahkola H, Knuutinen J, Herve S, Reinikainen M, Koistinen J (2013) Formation of PFOA from 8:2 FTOH in closed-bottle experiments with brackish water. Environ Sci Pollut Res Int 20:8001–8012

    Article  Google Scholar 

  • Klaunig JE, Babich MA, Baetcke KP, Cook JC, Corton JC, David RM et al (2003) PPARalpha agonist-induced rodent tumors: modes of action and human relevance. Crit Rev Toxicol 33:655–780

    Article  CAS  Google Scholar 

  • Klaunig JE, Hocevar BA, Kamendulis LM (2012) Mode of action analysis of perfluorooctanoic acid (PFOA) tumorigenicity and human relevance. Reprod Toxicol 33:410–418

    Article  CAS  Google Scholar 

  • Lau C (2012) Perfluorinated compounds. EXS 101:47–86

    Google Scholar 

  • Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J (2007) Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol Sci 99:366–394

    Article  CAS  Google Scholar 

  • Lee W, Roberts SM, Labbe RF (1997) Ascorbic acid determination with an automated enzymatic procedure. Clin Chem 43:154–157

    CAS  Google Scholar 

  • Liao X, Zhu J, Rubab M, Feng YL, Poon R (2010) An analytical method for the measurement of acid metabolites of tryptophan-NAD pathway and related acids in urine. J Chromatogr B 878:1003–1006

    Article  CAS  Google Scholar 

  • Lindstrom AB, Strynar MJ, Libelo EL (2011) Polyfluorinated compounds: past, present, and future. Environ Sci Technol 45:7954–7961

    Article  CAS  Google Scholar 

  • Linster CL, Van SE (2007) Vitamin C. Biosynthesis, recycling and degradation in mammals. FEBS J 274:1–22

    Article  CAS  Google Scholar 

  • Loccisano AE, Campbell JL Jr, Butenhoff JL, Andersen ME, Clewell HJ III (2012) Comparison and evaluation of pharmacokinetics of PFOA and PFOS in the adult rat using a physiologically based pharmacokinetic model. Reprod Toxicol 33:452–467

    Article  CAS  Google Scholar 

  • Longenecker HE, Fricke HH, King CG (1940) The effect of organic compounds upon vitamin C synthesis in the rat. J Biol Chem 135:497–510

    CAS  Google Scholar 

  • Lubet RA, Nims RW, Mayer RT, Cameron JW, Schechtman LM (1985) Measurement of cytochrome P-450 dependent dealkylation of alkoxyphenoxazones in hepatic S9 and hepatocyte homogenates: effects of dicumarol. Mutat Res 142:127–131

    Article  CAS  Google Scholar 

  • Maloney EK, Waxman DJ (1999) Trans-Activation of PPARalpha and PPARgamma by structurally diverse environmental chemicals. Toxicol Appl Pharmacol 161:209–218

    Article  CAS  Google Scholar 

  • Mitchell FE, Price SC, Hinton RH, Grasso P, Bridges JW (1985) Time and dose-response study of the effects on rats of the plasticizer di(2-ethylhexyl) phthalate. Toxicol Appl Pharmacol 81:371–392

    Article  CAS  Google Scholar 

  • Nakamura T, Ito Y, Yanagiba Y, Ramdhan DH, Kono Y, Naito H et al (2009) Microgram-order ammonium perfluorooctanoate may activate mouse peroxisome proliferator-activated receptor alpha, but not human PPARalpha. Toxicology 265:27–33

    Article  CAS  Google Scholar 

  • Nishimura J, Dewa Y, Muguruma M, Kuroiwa Y, Yasuno H, Shima T et al (2007) Effect of fenofibrate on oxidative DNA damage and on gene expression related to cell proliferation and apoptosis in rats. Toxicol Sci 97:44–54

    Article  CAS  Google Scholar 

  • Nishimura J, Dewa Y, Okamura T, Muguruma M, Jin M, Saegusa Y et al (2008) Possible involvement of oxidative stress in fenofibrate-induced hepatocarcinogenesis in rats. Arch Toxicol 82:641–654

    Article  CAS  Google Scholar 

  • Pass D, Freeth G (1993) The Rat. ANZCCART 6:1–4

    Google Scholar 

  • Peters JM, Gonzalez FJ (2011) Why toxic equivalency factors are not suitable for perfluoroalkyl chemicals. Chem Res Toxicol 24:1601–1609

    Article  CAS  Google Scholar 

  • Pollack GM, Li RC, Ermer JC, Shen DD (1985) Effects of route of administration and repetitive dosing on the disposition kinetics of di(2-ethylhexyl) phthalate and its mono-de-esterified metabolite in rats. Toxicol Appl Pharmacol 79:246–256

    Article  CAS  Google Scholar 

  • Post GB, Cohn PD, Cooper KR (2012) Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: a critical review of recent literature. Environ Res 116:93–117

    Article  CAS  Google Scholar 

  • Ringeissen S, Connor SC, Brown HR, Sweatman BC, Hodson MP, Kenny SP et al (2003) Potential urinary and plasma biomarkers of peroxisome proliferation in the rat: identification of N-methylnicotinamide and N-methyl-4-pyridone-3-carboxamide by 1H nuclear magnetic resonance and high performance liquid chromatography. Biomarkers 8:240–271

    Article  CAS  Google Scholar 

  • Rosen MB, Lau C, Corton JC (2009) Does exposure to perfluoroalkyl acids present a risk to human health? Toxicol Sci 111:1–3

    Article  CAS  Google Scholar 

  • Seals R, Bartell SM, Steenland K (2011) Accumulation and clearance of perfluorooctanoic acid (PFOA) in current and former residents of an exposed community. Environ Health Perspect 119:119–124

    Article  CAS  Google Scholar 

  • Shankar A, Xiao J, Ducatman A (2011) Perfluoroalkyl chemicals and chronic kidney disease in US adults. Am J Epidemiol 174:893–900

    Article  Google Scholar 

  • Small GM, Burdett K, Connock MJ (1985) A sensitive spectrophotometric assay for peroxisomal acyl-CoA oxidase. Biochem J 227:205–210

    CAS  Google Scholar 

  • Stahl T, Mattern D, Brunn H (2011) Toxicology of perfluorinated compounds. Environ Sci Eur 23:38

    Article  Google Scholar 

  • Steenland K, Tinker S, Shankar A, Ducatman A (2010) Association of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) with uric acid among adults with elevated community exposure to PFOA. Environ Health Perspect 118:229–233

    Article  CAS  Google Scholar 

  • Takacs ML, Abbott BD (2007) Activation of mouse and human peroxisome proliferator-activated receptors (alpha, beta/delta, gamma) by perfluorooctanoic acid and perfluorooctane sulfonate. Toxicol Sci 95:108–117

    Article  CAS  Google Scholar 

  • Takagi A, Sai K, Umemura T, Hasegawa R, Kurokawa Y (1991) Short-term exposure to the peroxisome proliferators, perfluorooctanoic acid and perfluorodecanoic acid, causes significant increase of 8-hydroxydeoxyguanosine in liver DNA of rats. Cancer Lett 57:55–60

    Article  CAS  Google Scholar 

  • Uetake D, Ohno I, Ichida K, Yamaguchi Y, Saikawa H, Endou H et al (2010) Effect of fenofibrate on uric acid metabolism and urate transporter 1. Intern Med 49:89–94

    Article  CAS  Google Scholar 

  • Vanden Heuvel JP, Kuslikis BI, Van Rafelghem MJ, Peterson RE (1991) Tissue distribution, metabolism, and elimination of perfluorooctanoic acid in male and female rats. J Biochem Toxicol 6:83–92

    Article  CAS  Google Scholar 

  • Vanden Heuvel JP, Thompson JT, Frame SR, Gillies PJ (2006) Differential activation of nuclear receptors by perfluorinated fatty acid analogs and natural fatty acids: a comparison of human, mouse, and rat peroxisome proliferator-activated receptor-alpha, -beta, and -gamma, liver X receptor-beta, and retinoid X receptor-alpha. Toxicol Sci 92:476–489

    Article  CAS  Google Scholar 

  • Watkins DJ, Josson J, Elston B, Bartell SM, Shin HM, Vieira VM et al (2013) Exposure to perfluoroalkyl acids and markers of kidney function among children and adolescents living near a chemical plant. Environ Health Perspect 121:625–630

    Article  Google Scholar 

  • Weaver YM, Ehresman DJ, Butenhoff JL, Hagenbuch B (2010) Roles of rat renal organic anion transporters in transporting perfluorinated carboxylates with different chain lengths. Toxicol Sci 113:305–314

    Article  CAS  Google Scholar 

  • Wilhelm M, Holzer J (2012) Human biomonitoring of perfluorinated compounds. In: Knepper TP, Lange FT (eds) Polyfluorinated chemicals and transformation products. Springer-Verlag, Berlin, pp 155–168

    Chapter  Google Scholar 

  • Wu X, Wakamiya M, Vaishnav S, Geske R, Montgomery C Jr, Jones P et al (1994) Hyperuricemia and urate nephropathy in urate oxidase-deficient mice. Proc Natl Acad Sci USA 91:742–746

    Article  CAS  Google Scholar 

  • Xie Y, Yang Q, DePierre JW (2002) The effects of peroxisome proliferators on global lipid homeostasis and the possible significance of these effects to other responses to these xenobiotics: an hypothesis. Ann N Y Acad Sci 973:17–25

    Article  CAS  Google Scholar 

  • Yang CH, Glover KP, Han X (2010) Characterization of cellular uptake of perfluorooctanoate via organic anion-transporting polypeptide 1A2, organic anion transporter 4, and urate transporter 1 for their potential roles in mediating human renal reabsorption of perfluorocarboxylates. Toxicol Sci 117:294–302

    Article  CAS  Google Scholar 

  • Zhen Y, Krausz KW, Chen C, Idle JR, Gonzalez FJ (2007) Metabolomic and genetic analysis of biomarkers for peroxisome proliferator-activated receptor alpha expression and activation. Mol Endocrinol 21:2136–2151

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was funded through Health Canada A-Base. The authors thank Brita Nadeau for excellent technical assistance and Mike Wade and Premkumari Kumarathasan for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Pelletier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rigden, M., Pelletier, G., Poon, R. et al. Assessment of Urinary Metabolite Excretion After Rat Acute Exposure to Perfluorooctanoic Acid and Other Peroxisomal Proliferators. Arch Environ Contam Toxicol 68, 148–158 (2015). https://doi.org/10.1007/s00244-014-0058-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-014-0058-y

Keywords

Navigation