Skip to main content

Advertisement

Log in

Enantiomeric Enrichment of 2,2′,3,3′,6,6′-Hexachlorobiphenyl (PCB 136) in Mice After Induction of CYP Enzymes

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Several PCB congeners, present in commercial PCB formulations, are chiral. These PCBs can undergo enantiomeric enrichment in many animal species and in humans due to currently uncharacterized enantioselective biotransformation processes. To investigate if certain cytochrome P-450 enzymes (CYPs), such as CYP2B’s, are responsible for this enantiomeric enrichment, we investigated the enantioselective disposition of (±)-PCB 136 in female mice after induction of different CYP enzymes by pretreatment with corn oil alone, β-naphthoflavone (CYP1A’s), phenobarbital (CYP2B’s), or dexamethasone (2B’s and 3A’s), followed by oral PCB administration. PCB 136 levels were significantly lower in phenobarbital- and, to a lesser extent, in dexamethasone-pretreated animals, presumably due to the induction of PCB 136 metabolizing enzymes. Although (+)-PCB 136 was enriched in all tissues, none of the pretreatments altered the enantioselective disposition of PCB 136 in a manner that suggests a particular CYP subfamily as the cause of the enrichment of (+)-PCB 136. Fecal PCB levels and enantiomeric fraction values changed over time in a manner consistent with slower digestive motility in the mice pretreated with phenobarbital and dexamethasone. Overall, this study does not support the hypothesis that metabolism by CYP2B enzymes is responsible for the enrichment of (+)-PCB 136 in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Birnbaum LS (1983) Distribution and excretion of 2,3,6,2′,3′,6′- and 2,4,5,2′,4′,5′-hexachlorobiphenyl in senescent rats. Toxicol Appl Pharmacol 70:262–272

    Article  CAS  Google Scholar 

  • Brown JF (1994) Determination of PCB metabolic, excretion, and accumulation rates for use as indicators of biological response and relative risk. Environ Sci Technol 28:2295–2305

    Article  CAS  Google Scholar 

  • Buckman AH, Wong CS, Chow EA, Brown SB, Solomon KR, Fisk AT (2006) Biotransformation of polychlorinated biphenyls (PCBs) and bioformation of hydroxylated PCBs in fish. Aquat Toxicol 78:176–185

    Article  CAS  Google Scholar 

  • Chu S, Covaci A, Schepens P (2003) Levels and chiral signatures of persistent organochlorine pollutants in human tissues from Belgium. Environ Res 93:167–176

    Article  CAS  Google Scholar 

  • Haglund P, Wiberg K (1996) Determination of the gas chromatographic elution sequences of the (+) and (–) enantiomers of stable enantiomeric PCBs on Chirasil-Dex. J High Resol Chromatogr 19:373–376

    Article  CAS  Google Scholar 

  • Harner T, Wiberg K, Norstrom R (2000) Enantiomer fractions are preferred to enantiomer ratios for describing chiral signatures in environmental analysis. Environ Sci Technol 34:218–220

    Article  CAS  Google Scholar 

  • Harrad S, Ren J, Hazrati S, Robson M (2006) Chiral signatures of PCBs 95 and 149 in indoor air, grass, duplicate diets and human faeces. Chemosphere 63:1368–1376

    Article  CAS  Google Scholar 

  • Holzer P, Beubler E, Dirnhofer R (1987) Barbiturate poisoning and gastrointestinal propulsion. Arch Toxicol 60:394–396

    Article  CAS  Google Scholar 

  • Hornbuckle KC, Carlson DL, Swackhamer DL, Baker JE, Eisenreich SJ (2006) Polychlorinated biphenyls in the Great Lakes. In: Hites R (ed) Handbook of environmental chemistry. Springer Verlag, Berlin, p 13–70

    Google Scholar 

  • Hrycay EG, Bandiera SM (2003) Spectral interactions of tetrachlorobiphenyls with hepatic microsomal cytochrome P450 enzymes. Chem Biol Interact 146:285–296

    Article  CAS  Google Scholar 

  • Kaminski LS, Kennedy MW, Adams SM, Guengerich FP (1981) Metabolism of dichlorobiphenyls by highly purified isozymes of rat liver cytochrome P-450. Biochemistry 20:7379–7384

    Article  Google Scholar 

  • Kania-Korwel I, Hornbuckle KC, Peck A, Ludewig G, Robertson LW, Sulkowski WW, Espandiari P, Gairola CG, Lehmler H-J (2005) Congener specific tissue distribution of Aroclor 1254 and a highly chlorinated environmental PCB mixture in rats. Environ Sci Technol 39:3513–3520

    Article  CAS  Google Scholar 

  • Kania-Korwel I, Garrison AW, Avants JK, Hornbuckle KC, Robertson LW, Sulkowski WW, Lehmler H-J (2006) Distribution of chiral PCBs in selected tissues in the laboratory rat. Environ Sci Technol 40:3704–3710

    Article  CAS  Google Scholar 

  • Kania-Korwel I, Shaikh N, Hornbuckle KC, Robertson LW, Lehmler H-J (2007) Enantioselective disposition of PCB 136 (2,2′,3,3′,6,6′-hexachlorobifenyl) in C57BL/6 mice after oral and intraperitoneal administration. Chirality 19:56–66

    Article  CAS  Google Scholar 

  • Kodavanti PRS (2004) Intracellular signaling and developmental neurotoxicity. In: Zawia NH (ed) Molecular neurotoxicology: environmental agents and transcription-transduction coupling. CRC Press, Boca Raton, FL, pp 151–182

    Google Scholar 

  • Lehmler H-J, Robertson LW (2001) Atropisomers of PCBs. In: Robertson LW, Hansen LG (eds) Recent Advances in the Environmental Toxicology and Health Effects of PCBs. University Press of Kentucky, Lexington, p. 61–65

    Google Scholar 

  • Lehmler H-J, Price DJ, Garrison AW, Birge WJ, Robertson LW (2003) Distribution of PCB 84 enantiomers in C57Bl/6 mice. Fresenius Environ Bull 12:254–260

    CAS  Google Scholar 

  • Lehmler H-J, Robertson LW, Garrison AW, Kodavanti PRS (2005) Effects of PCB 84 enantiomers on [3H] phorbol ester binding in rat cerebellar granule cells and 45Ca2+-uptake in rat cerebellum. Toxicol Lett 156:391–400

    Article  CAS  Google Scholar 

  • Matthews HB, Tuey DB (1980) The effect of chlorine position on the distribution and excretion of four hexachlorobiphenyl isomers. Toxicol Appl Pharmacol 53:377–388

    Article  CAS  Google Scholar 

  • Mizutani T, Hidaka K, Ohe T, Matsumoto M, Yamamoto K, Tajima K (1980) Comparative study on accumulation and elimination of hexachlorobiphenyls and decachlorobiphenyl in mice. Bull Environ Contam Toxicol 25:181–187

    Article  CAS  Google Scholar 

  • Muller TA, Kohler H-PE (2004) Chirality of pollutants—effects on metabolism and fate. Appl Microbiol Biotechnol 64:300–316

    Article  CAS  Google Scholar 

  • Norström K, Eriksson J, Haglund J, Silvari V, Bergman A (2006) Enantioselective formation of methyl sulfone metabolites of 2,2′,3,3′,4,6′-hexachlorobiphenyl in rat. Environ Sci Technol 40:7649–7655

    Article  CAS  Google Scholar 

  • Pereg D, Tampal N, Espandiari P, Robertson LW (2001) Distribution and macromolecular binding of benzo[a]pyrene and two polychlorinated biphenyl congeners in female mice. Chem Biol Interact 137:243–258

    Article  CAS  Google Scholar 

  • Persico P, Capasso A, Calignano A, Sorrentino L (1991) Effect of Ru-38486 on dexamethasone reversal of morphine induced constipation in mice. Gen Pharmacol 22:867–868

    CAS  Google Scholar 

  • Püttmann M, Mannschreck A, Oesch F, Robertson L (1989) Chiral effects in the induction of drug-metabolizing enzymes using synthetic atropisomers of polychlorinated biphenyls (PCBs). Biochem Pharmacol 38:1345–1352

    Article  Google Scholar 

  • Robertson L, Parkinson A, Bandiera S, Lambert I, Merrill J, Safe SH (1984) PCBs and PBBs: biologic and toxic effects on C57BL/6J and DBA/2J inbred mice. Toxicology 31:191–206

    Article  CAS  Google Scholar 

  • Robertson LW, Hansen LG (2001) PCBs. Recent advances in environmental toxicology and health effect. University of Kentucky Press, Lexington

    Google Scholar 

  • Schantz SL, Widholm JJ, Rice DC (2003) Effects of PCB exposure on neuropsychological function in children. Environ Health Perspect 111:357–376

    CAS  Google Scholar 

  • Schnellmann R, Putnam C, Sipes I (1983) Metabolism of 2,2′,3,3′,6,6′-hexachlorobiphenyl and 2,2′,4,4′,5,5′-hexachlorobiphenyl by human hepatic microsomes. Biochem Pharmacol 32:3233–3239

    Article  CAS  Google Scholar 

  • Schramm H, Robertson LW, Oesch F (1985) Differential regulation of hepatic glutathione transferase and glutathione peroxidase activities in the rat. Biochem Pharmacol 34:3735–3739

    Article  CAS  Google Scholar 

  • Shaikh N, Parkin S, Lehmler H-J (2006) The Ullmann coupling reaction: a new approach to tetraarylstannanes. Organometallics 25:4207–4214

    Article  CAS  Google Scholar 

  • Singer AC, Wong CS, Crowley DE (2002) Differential enantioselective transformation of atropisomeric polychlorinated biphenyls by multiple bacterial strains with different inducing compounds. Appl Environ Microbiol 68:5756–5759

    Article  CAS  Google Scholar 

  • Tampal N, Myers S, Robertson LW (2002) Binding of polychlorinated biphenyls to hemoglobin. Toxicol Lett 142:53–60

    Article  CAS  Google Scholar 

  • Waller SC, He YA, Harlow GR, He YQ, Mash EA, Halpert JR (1999) 2,2′,3,3′,6,6′-Hexachlorobiphenyl hydroxylation by active site mutants of cytochrome P450 2B1 and 2B11. Chem Res Toxicol 12:690–699

    Article  CAS  Google Scholar 

  • Wong CS, Lau F, Clark M, Mabury SA, Muir DCG (2002) Rainbow Trout (Oncorhynchus mykiss) can eliminate chiral organochlorine compound enantioselectively. Environ Sci Technol 36:1257–1262

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Regine Garcia Boy for assistance with the animal procedures, Collin Just for help with the GC analysis, Holly Moriarty and Allison Smith for help with the analytical work, and Dr. Botond Banfi for use of his metabolism cages. This research was supported by Grants ES05605, ES013661, and ES012475 from the National Institute of Environmental Health Sciences, NIH, and Major Research Instrumentation Grant BES-0420378 form the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Joachim Lehmler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kania-Korwel, I., Xie, W., Hornbuckle, K.C. et al. Enantiomeric Enrichment of 2,2′,3,3′,6,6′-Hexachlorobiphenyl (PCB 136) in Mice After Induction of CYP Enzymes. Arch Environ Contam Toxicol 55, 510–517 (2008). https://doi.org/10.1007/s00244-007-9111-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-007-9111-4

Keywords

Navigation