Skip to main content
Log in

The altered composition of gut microbiota and biochemical features as well as dietary patterns in a southern Chinese population with recurrent renal calcium oxalate stones

  • Research
  • Published:
Urolithiasis Aims and scope Submit manuscript

Abstract

The correlation among gut microbiota, biochemical features, and dietary patterns in recurrent stone formers has been inadequately investigated in the Chinese population. Forty-two patients with calcium oxalate stones (CaOxS group), including 34 recurrent stone formers (RS group), and 40 nonstone healthy subjects (NS group) from Changshu Hospital Affiliated with Soochow University, were prospectively recruited. Food frequency questionnaires were completed by participants, fasting vein blood was extracted, 24-h urine was collected for biochemical detection, and fecal samples were gathered for 16S ribosomal RNA (rRNA) gene sequencing. BMI; serum levels of triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), magnesium, and creatinine; and urine levels of magnesium in stone formers were significantly different from those of controls, and RS patients showed significantly low serum phosphate and high urine phosphate levels. Celery, bamboo shoots, and pickled food were the favored foods of local stone formers. Patients with recurrent stones had altered microbiota composition, with Escherichia, Fusobacterium, and Epulopiscium being the predominant pathogenic genera. The gut microbiota in RS patients had stronger functions in fatty acid and amino acid degradation but weaker functions in their biosynthesis. The pathogenic genera were positively correlated with BMI; serum levels of TGs and creatinine; urine levels of calcium, phosphate, and uric acid (UA); and celery, bamboo shoots, and pickled food intake. The abundance of Escherichia and Fusobacterium and the levels of serum magnesium and creatinine were the most relevant factors associated with stone recurrence and could be validated as biomarkers of recurrence. Our research provides a novel prevention strategy for the recurrence of renal calcium oxalate stones in the Han Chinese population of southern China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The raw data of 16S rRNA gene sequencing were uploaded as a BioProject to the NCBI database (PRJNA921953).

References

  1. Sorokin I, Mamoulakis C, Miyazawa K, Rodgers A, Talati J, Lotan YJWjou (2017) Epidemiology of stone disease across the world. World J Urol 35(9):1301–1320. https://doi.org/10.1007/s00345-017-2008-6

    Article  PubMed  Google Scholar 

  2. Wang W, Fan J, Huang G, Li J, Zhu X, Tian Y et al (2017) Prevalence of kidney stones in mainland China: a systematic review. Sci Rep 7:41630. https://doi.org/10.1038/srep41630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zeng G, Mai Z, Xia S, Wang Z, Zhang K, Wang L et al (2017) Prevalence of kidney stones in China: an ultrasonography based cross-sectional study. BJU Int 120(1):109–116. https://doi.org/10.1111/bju.13828

    Article  PubMed  Google Scholar 

  4. Ye Z, Zeng G, Yang H, Li J, Tang K, Wang G et al (2020) The status and characteristics of urinary stone composition in China. BJU Int 125(6):801–809. https://doi.org/10.1111/bju.14765

    Article  CAS  PubMed  Google Scholar 

  5. Vaughan L, Enders F, Lieske J, Pais V, Rivera M, Mehta R et al (2019) Predictors of symptomatic kidney stone recurrence after the first and subsequent episodes. Mayo Clin Proc 94(2):202–210. https://doi.org/10.1016/j.mayocp.2018.09.016

    Article  CAS  PubMed  Google Scholar 

  6. Zhuo D, Li M, Cheng L, Zhang J, Huang H, Yao YJMsmimjoe et al (2019) A study of diet and lifestyle and the risk of urolithiasis in 1519 patients in southern China. Med Sci Monit 25:4217–4224. https://doi.org/10.12659/msm.916703

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhao A, Dai M, Chen Y, Chang H, Liu A, Wang PJA-Pjoph (2015) Risk factors associated with nephrolithiasis: a case-control study in China. Asia Pac J Public Health 27(2):NP414-424. https://doi.org/10.1177/1010539512445189

    Article  PubMed  Google Scholar 

  8. Ding Q, Ouyang J, Fan B, Cao C, Fan Z, Ding L et al (2019) Association between dyslipidemia and nephrolithiasis risk in a chinese population. Urol Int 103(2):156–165. https://doi.org/10.1159/000496208

    Article  CAS  PubMed  Google Scholar 

  9. Gomaa EJAvL (2020) Human gut microbiota/microbiome in health and diseases: a review. Antonie Van Leeuwenhoek 113(12):2019–2040. https://doi.org/10.1007/s10482-020-01474-7

    Article  PubMed  Google Scholar 

  10. Adak A, Khan MJC, mls CMLS (2019) An insight into gut microbiota and its functionalities. Cell Mol Life Sci 76(3):473–493. https://doi.org/10.1007/s00018-018-2943-4

    Article  CAS  PubMed  Google Scholar 

  11. Loganathan T, Priya Doss CGJLs (2022) The influence of machine learning technologies in gut microbiome research and cancer studies—a review. Life Sci 311(Pt A):121118. https://doi.org/10.1016/j.lfs.2022.121118

    Article  CAS  PubMed  Google Scholar 

  12. Fernandes M, Aggarwal P, Costa R, Cole A, Trinchieri GJNrC (2022) Targeting the gut microbiota for cancer therapy. Nat Rev Cancer 22(12):703–722. https://doi.org/10.1038/s41568-022-00513-x

    Article  CAS  PubMed  Google Scholar 

  13. Bostanghadiri N, Ziaeefar P, Sameni F, Mahmoudi M, Hashemi A, Darban-Sarokhalil D (2021) The controversial association of gut and urinary microbiota with kidney stone formation. Microbial Pathogenesis. https://doi.org/10.1016/j.micpath.2021.105257

    Article  PubMed  Google Scholar 

  14. Stern J, Moazami S, Qiu Y, Kurland I, Chen Z, Agalliu I et al (2016) Evidence for a distinct gut microbiome in kidney stone formers compared to non-stone formers. Urolithiasis 44(5):399–407. https://doi.org/10.1007/s00240-016-0882-9

    Article  PubMed  PubMed Central  Google Scholar 

  15. Liu Y, Jin X, Hong HG, Xiang L, Jiang Q, Ma Y et al (2020) The relationship between gut microbiota and short chain fatty acids in the renal calcium oxalate stones disease. FASEB J 34(8):11200–11214. https://doi.org/10.1096/fj.202000786R

    Article  CAS  PubMed  Google Scholar 

  16. Nallu A, Sharma S, Ramezani A, Muralidharan J, Raj D (2017) Gut microbiome in chronic kidney disease: challenges and opportunities. Transl Res 179:24–37. https://doi.org/10.1016/j.trsl.2016.04.007

    Article  CAS  PubMed  Google Scholar 

  17. Allison M, Dawson K, Mayberry W, Foss JJAom (1985) Oxalobacter formigenes gen. nov., sp. nov.: oxalate-degrading anaerobes that inhabit the gastrointestinal tract. Arch Microbiol 141(1):1–7. https://doi.org/10.1007/bf00446731

    Article  CAS  PubMed  Google Scholar 

  18. Tavasoli S, Alebouyeh M, Naji M, Shakiba Majd G, Shabani Nashtaei M, Broumandnia N et al (2020) Association of intestinal oxalate-degrading bacteria with recurrent calcium kidney stone formation and hyperoxaluria: a case-control study. BJU Int 125(1):133–143. https://doi.org/10.1111/bju.14840

    Article  CAS  PubMed  Google Scholar 

  19. Chen F, Bao X, Liu S, Ye K, Xiang S, Yu L et al (2021) Gut microbiota affect the formation of calcium oxalate renal calculi caused by high daily tea consumption. Appl Microbiol Biotechnol 105(2):789–802. https://doi.org/10.1007/s00253-020-11086-w

    Article  CAS  PubMed  Google Scholar 

  20. Ahluwalia N, Dwyer J, Terry A, Moshfegh A, Johnson CJAin (2016) Update on NHANES dietary data: focus on collection, release, analytical considerations, and uses to inform public policy. Adv Nutr 7(1):121–134. https://doi.org/10.3945/an.115.009258

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yuan C, Jin X, He Y, Liu Y, Xiang L, Wang K (2022) Association of dietary patterns with gut microbiota in kidney stone and non-kidney stone individuals. Urolithiasis 50(4):389–399. https://doi.org/10.1007/s00240-022-01325-2

    Article  CAS  PubMed  Google Scholar 

  22. Mayasari NR, Bai CH, Hu TY, Chao JC, Chen YC, Huang YL et al (2021) Associations of food and nutrient intake with serum hepcidin and the risk of gestational iron-deficiency anemia among pregnant women: a population-based study. Nutrients. https://doi.org/10.3390/nu13103501

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wang K, Ge J, Han W, Wang D, Zhao Y, Shen Y et al (2022) Risk factors for kidney stone disease recurrence: a comprehensive meta-analysis. BMC Urol 22(1):62. https://doi.org/10.1186/s12894-022-01017-4

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liu N, Feng Y, Li J, Ma X, Ma F (2022) Relationship between the dietary inflammatory index and kidney stone prevalence. World J Urol 40(6):1545–1552. https://doi.org/10.1007/s00345-022-03998-1

    Article  CAS  PubMed  Google Scholar 

  25. Zhao Y, Fan Y, Wang M, Yu C, Zhou M, Jiang D et al (2021) Kidney stone disease and cardiovascular events: a study on bidirectional causality based on mendelian randomization. Transl Androl Urol 10(12):4344–4352. https://doi.org/10.21037/tau-21-899

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chang CW, Ke HL, Lee JI, Lee YC, Jhan JH, Wang HS et al (2021) Metabolic syndrome increases the risk of kidney stone disease: a cross-sectional and longitudinal cohort study. J Pers Med. https://doi.org/10.3390/jpm11111154

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tastemur S, Senel S, Olcucuoglu E, Uzun E (2022) Evaluation of the relationship between fat volume and nephrolithiasis. Curr Med Imaging 18(4):398–403. https://doi.org/10.2174/1573405617666211130154127

    Article  PubMed  Google Scholar 

  28. Kang HW, Lee SK, Kim WT, Kim YJ, Yun SJ, Lee SC et al (2014) Hypertriglyceridemia and low high-density lipoprotein cholesterolemia are associated with increased hazard for urolithiasis. J Endourol 28(8):1001–1005. https://doi.org/10.1089/end.2014.0135

    Article  PubMed  Google Scholar 

  29. Masterson JH, Woo JR, Chang DC, Chi T, L’Esperance JO, Stoller ML et al (2015) Dyslipidemia is associated with an increased risk of nephrolithiasis. Urolithiasis 43(1):49–53. https://doi.org/10.1007/s00240-014-0719-3

    Article  CAS  PubMed  Google Scholar 

  30. Berkemeyer S, Bhargava A, Bhargava U (2007) Urinary phosphorus rather than urinary calcium possibly increases renal stone formation in a sample of Asian Indian, male stone-formers. Br J Nutr 98(6):1224–1228. https://doi.org/10.1017/S0007114507778686

    Article  CAS  PubMed  Google Scholar 

  31. Kanbay M, Onal EM, Afsar B, Dagel T, Yerlikaya A, Covic A et al (2018) The crosstalk of gut microbiota and chronic kidney disease: role of inflammation, proteinuria, hypertension, and diabetes mellitus. Int Urol Nephrol 50(8):1453–1466. https://doi.org/10.1007/s11255-018-1873-2

    Article  PubMed  Google Scholar 

  32. Rukavina Mikusic NL, Kouyoumdzian NM, Choi MR (2020) Gut microbiota and chronic kidney disease: evidences and mechanisms that mediate a new communication in the gastrointestinal-renal axis. Pflugers Arch 472(3):303–320. https://doi.org/10.1007/s00424-020-02352-x

    Article  CAS  PubMed  Google Scholar 

  33. Ivanovski O, Drueke TB (2013) A new era in the treatment of calcium oxalate stones? Kidney Int 83(6):998–1000. https://doi.org/10.1038/ki.2013.41

    Article  CAS  PubMed  Google Scholar 

  34. Arvans D, Jung YC, Antonopoulos D, Koval J, Granja I, Bashir M et al (2017) Oxalobacter formigenes-derived bioactive factors stimulate oxalate transport by intestinal epithelial cells. J Am Soc Nephrol 28(3):876–887. https://doi.org/10.1681/ASN.2016020132

    Article  CAS  PubMed  Google Scholar 

  35. Pebenito AM, Liu M, Nazzal L, Blaser MJ (2019) Development of a humanized murine model for the study of oxalobacter formigenes intestinal colonization. J Infect Dis 220(11):1848–1858. https://doi.org/10.1093/infdis/jiz370

    Article  PubMed  PubMed Central  Google Scholar 

  36. Miller AW, Choy D, Penniston KL, Lange D (2019) Inhibition of urinary stone disease by a multi-species bacterial network ensures healthy oxalate homeostasis. Kidney Int 96(1):180–188. https://doi.org/10.1016/j.kint.2019.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ticinesi A, Milani C, Guerra A, Allegri F, Lauretani F, Nouvenne A et al (2018) Understanding the gut-kidney axis in nephrolithiasis: an analysis of the gut microbiota composition and functionality of stone formers. Gut 67(12):2097–2106. https://doi.org/10.1136/gutjnl-2017-315734

    Article  CAS  PubMed  Google Scholar 

  38. Tang R, Jiang Y, Tan A, Ye J, Xian X, Xie Y et al (2018) 16S rRNA gene sequencing reveals altered composition of gut microbiota in individuals with kidney stones. Urolithiasis 46(6):503–514. https://doi.org/10.1007/s00240-018-1037-y

    Article  CAS  PubMed  Google Scholar 

  39. Kachroo N, Lange D, Penniston KL, Stern J, Tasian G, Bajic P et al (2021) Meta-analysis of clinical microbiome studies in urolithiasis reveal age, stone composition, and study location as the predominant factors in urolithiasis-associated microbiome composition. mBio 12(4):e0200721. https://doi.org/10.1128/mBio.02007-21

    Article  PubMed  Google Scholar 

  40. Denburg MR, Koepsell K, Lee JJ, Gerber J, Bittinger K, Tasian GE (2020) Perturbations of the gut microbiome and metabolome in children with calcium oxalate kidney stone disease. J Am Soc Nephrol 31(6):1358–1369. https://doi.org/10.1681/ASN.2019101131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ticinesi A, Nouvenne A, Chiussi G, Castaldo G, Guerra A, Meschi T (2020) Calcium oxalate nephrolithiasis and gut microbiota: not just a gut-kidney axis. A nutritional perspective. Nutrients. https://doi.org/10.3390/nu12020548

    Article  PubMed  PubMed Central  Google Scholar 

  42. Shen W, Sun J, Li Z, Yao F, Lin K, Jiao X (2021) Food intake and its effect on the species and abundance of intestinal flora in colorectal cancer and healthy individuals. Korean J Intern Med 36(3):568–583. https://doi.org/10.3904/kjim.2019.373

    Article  PubMed  Google Scholar 

  43. Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H et al (2017) Salt-responsive gut commensal modulates T(H)17 axis and disease. Nature 551(7682):585–589. https://doi.org/10.1038/nature24628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chung WS, Walker AW, Louis P, Parkhill J, Vermeiren J, Bosscher D et al (2016) Modulation of the human gut microbiota by dietary fibres occurs at the species level. BMC Biol 14:3. https://doi.org/10.1186/s12915-015-0224-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sanchez-Tapia M, Hernandez-Velazquez I, Pichardo-Ontiveros E, Granados-Portillo O, Galvez A, Tovar AR et al (2020) Consumption of cooked black beans stimulates a cluster of some clostridia class bacteria decreasing inflammatory response and improving insulin sensitivity. Nutrients. https://doi.org/10.3390/nu12041182

    Article  PubMed  PubMed Central  Google Scholar 

  46. Scholz-Ahrens KE, Schrezenmeir J (2007) Inulin and oligofructose and mineral metabolism: the evidence from animal trials. J Nutr 137(11 Suppl):2513S-2523S. https://doi.org/10.1093/jn/137.11.2513S

    Article  CAS  PubMed  Google Scholar 

  47. Blaut M, Clavel T (2007) Metabolic diversity of the intestinal microbiota: implications for health and disease. J Nutr 137(3 Suppl 2):751S-755S. https://doi.org/10.1093/jn/137.3.751S

    Article  CAS  PubMed  Google Scholar 

  48. Guo S, Nighot M, Al-Sadi R, Alhmoud T, Nighot P, Ma TY (2015) Lipopolysaccharide regulation of intestinal tight junction permeability is mediated by TLR4 signal transduction pathway activation of FAK and MyD88. J Immunol 195(10):4999–5010. https://doi.org/10.4049/jimmunol.1402598

    Article  CAS  PubMed  Google Scholar 

  49. Amimanan P, Tavichakorntrakool R, Fong-Ngern K, Sribenjalux P, Lulitanond A, Prasongwatana V et al (2017) Elongation factor Tu on Escherichia coli isolated from urine of kidney stone patients promotes calcium oxalate crystal growth and aggregation. Sci Rep 7(1):2953. https://doi.org/10.1038/s41598-017-03213-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Carrasco SE, Yang Y, Troxell B, Yang X, Pal U, Yang XF (2015) Borrelia burgdorferi elongation factor EF-Tu is an immunogenic protein during Lyme borreliosis. Emerg Microbes Infect 4(9):e54. https://doi.org/10.1038/emi.2015.54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee HR, Jun HK, Kim HD, Lee SH, Choi BK (2012) Fusobacterium nucleatum GroEL induces risk factors of atherosclerosis in human microvascular endothelial cells and ApoE(-/-) mice. Mol Oral Microbiol 27(2):109–123. https://doi.org/10.1111/j.2041-1014.2011.00636.x

    Article  CAS  PubMed  Google Scholar 

  52. Liu H, Hong XL, Sun TT, Huang XW, Wang JL, Xiong H (2020) Fusobacterium nucleatum exacerbates colitis by damaging epithelial barriers and inducing aberrant inflammation. J Dig Dis 21(7):385–398. https://doi.org/10.1111/1751-2980.12909

    Article  CAS  PubMed  Google Scholar 

  53. Al-Hebshi NN, Nasher AT, Maryoud MY, Homeida HE, Chen T, Idris AM et al (2017) Inflammatory bacteriome featuring Fusobacterium nucleatum and Pseudomonas aeruginosa identified in association with oral squamous cell carcinoma. Sci Rep 7(1):1834. https://doi.org/10.1038/s41598-017-02079-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu Y, Baba Y, Ishimoto T, Iwatsuki M, Hiyoshi Y, Miyamoto Y et al (2019) Progress in characterizing the linkage between Fusobacterium nucleatum and gastrointestinal cancer. J Gastroenterol 54(1):33–41. https://doi.org/10.1007/s00535-018-1512-9

    Article  CAS  PubMed  Google Scholar 

  55. Cao C, Fan B, Zhu J, Zhu N, Cao JY, Yang DR (2022) Association of gut microbiota and biochemical features in a chinese population with renal uric acid stone. Front Pharmacol 13:888883. https://doi.org/10.3389/fphar.2022.888883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu L, Liang L, Liang H, Wang M, Lu B, Xue M et al (2019) Fusobacterium nucleatum aggravates the progression of colitis by regulating M1 macrophage polarization via AKT2 pathway. Front Immunol 10:1324. https://doi.org/10.3389/fimmu.2019.01324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nejman D, Livyatan I, Fuks G, Gavert N, Zwang Y, Geller LT et al (2020) The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 368(6494):973–980. https://doi.org/10.1126/science.aay9189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Aschard H, Laville V, Tchetgen ET, Knights D, Imhann F, Seksik P et al (2019) Genetic effects on the commensal microbiota in inflammatory bowel disease patients. PLoS Genet 15(3):e1008018. https://doi.org/10.1371/journal.pgen.1008018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Graessler J, Qin Y, Zhong H, Zhang J, Licinio J, Wong ML et al (2013) Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters. Pharmacogenom J 13(6):514–522. https://doi.org/10.1038/tpj.2012.43

    Article  CAS  Google Scholar 

  60. Martin R, Miquel S, Chain F, Natividad JM, Jury J, Lu J et al (2015) Faecalibacterium prausnitzii prevents physiological damages in a chronic low-grade inflammation murine model. BMC Microbiol 15:67. https://doi.org/10.1186/s12866-015-0400-1

    Article  PubMed  PubMed Central  Google Scholar 

  61. Duvallet C, Gibbons SM, Gurry T, Irizarry RA, Alm EJ (2017) Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nat Commun 8(1):1784. https://doi.org/10.1038/s41467-017-01973-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pasolli E, Truong DT, Malik F, Waldron L, Segata N (2016) Machine learning meta-analysis of large metagenomic datasets: tools and biological insights. PLoS Comput Biol 12(7):e1004977. https://doi.org/10.1371/journal.pcbi.1004977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xiang L, Jin X, Liu Y, Ma Y, Jian Z, Wei Z et al (2022) Prediction of the occurrence of calcium oxalate kidney stones based on clinical and gut microbiota characteristics. World J Urol 40(1):221–227. https://doi.org/10.1007/s00345-021-03801-7

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Changshu Medical Science and Technology Program (cswsq202002), Soochow Science and Technology Project (SKJY2021008), Introduction Project of Clinical Medicine Expert Team for Changshu (CSYJTD202001), and Suzhou Medical Research Key Talents Program (GSWS2021016).

Author information

Authors and Affiliations

Authors

Contributions

CC, FB, and JXH contributed to conception and design of the study. CC analyzed the data and wrote the manuscript. Data collection was performed by DQ and JXH. ZJ and YDR revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bo Fan.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval

This study was approved by the ethics committee of Changshu Hospital affiliated to Soochow University according to the ethical standards laid down in the 1964 Declaration of Helsinki (EC number. 2020-016).This article does not contain any studies with animals performed by any of the authors. Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 133 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, C., Jin, X., Ding, Q. et al. The altered composition of gut microbiota and biochemical features as well as dietary patterns in a southern Chinese population with recurrent renal calcium oxalate stones. Urolithiasis 51, 95 (2023). https://doi.org/10.1007/s00240-023-01467-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00240-023-01467-x

Keywords

Navigation