Skip to main content
Log in

Effect of potassium depletion on urinary stone risk factors in Wistar rats

  • Original Paper
  • Published:
Urological Research Aims and scope Submit manuscript

Abstract

Various studies have suggested that potassium depletion leads to acidosis and hypocitraturia. In Northeastern Thailand, for example, mild hypokalemia and mild hyperoxaluria are observed in most stone formers. However, there are limited reports about the direct link between potassium depletion and the formation of urinary stones, most of which are calcium oxalate stones. Therefore, we studied the direct effect of potassium depletion on the risk factors for calcium oxalate stone formation. Seventy-two rats were fed a control diet or a potassium-deficient diet for 1, 2, or 3 weeks (n = 12 per group). Twenty-four-hour urine collection was done for the measurement of potassium, calcium, oxalate, glycolate, citrate, phosphorus, and magnesium. Lactate dehydrogenase activity was also measured in order to assess renal tubular damage, and kidneys were harvested for histological examination. Furthermore, urinary supersaturation of calcium oxalate was calculated. With potassium depletion, the urinary concentrations of potassium, citrate, magnesium, and phosphorus decreased rapidly. There was no detectable renal damage, renal calcium deposition, and no significant increase of urinary oxalate or calcium. However, the urinary supersaturation index of calcium oxalate increased significantly in rats with potassium depletion. These findings indicate that potassium deficiency may increase the risk of stone formation through enhanced supersaturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sutherland JW, Parks JH, Coe FL et al (1985) Recurrence after a single renal stone in a community practice. Miner Electrolyte Metab 11(4):267–269

    CAS  PubMed  Google Scholar 

  2. Yanagawa M, Kawamura J, Onishi T et al (1997) Incidence of urolithiasis in northeast Thailand. Int J Urol 4(6):537–540

    Article  CAS  PubMed  Google Scholar 

  3. Coe FL, Evan A, Worcester E et al (2005) Kidney stone disease. J Clin Invest 115(10):2598–2608

    Article  CAS  PubMed  Google Scholar 

  4. Hossain RZ, Ogawa Y, Hokama S et al (2003) Urolithiasis in Okinawa, Japan: a relatively high prevalence of uric acid stones. Int J Urol 10(8):411–415

    Article  PubMed  Google Scholar 

  5. Bovornpadungkitti S, Sriboonlue P, Tavichakorntrakul R et al (2000) Potassium, sodium and magnesium contents in skeletal muscle of renal stone-formers: a study in an area of low potassium intake. J Med Assoc Thai 83(7):756–763

    CAS  PubMed  Google Scholar 

  6. Lelamali K, Khunkitti W, Yenrudi S et al (2003) Potassium depletion in a healthy north-eastern Thai population: no association with tubulo-interstitial injury. Nephrology 8:28–32

    Article  CAS  PubMed  Google Scholar 

  7. Ray EP, Suga SI, Liu XH et al (2001) Chronic potassium depletion induces renal injury, salt sensitivity, and hypertension in young rats. Kidney Int 59:1850–1858

    Article  CAS  PubMed  Google Scholar 

  8. Tosukhowong P, Boonla C, Ratchanon S et al (2007) Crystalline composition and etiologic factors of kidney stone in Thailand. Asian Biomed 1(1):89–97

    Google Scholar 

  9. Robertson WG (1986) Pathophysiology of stone formation. Urol Int 41(5):329–333

    Article  CAS  PubMed  Google Scholar 

  10. López M, Hoppe B (2008) History, epidemiology, and regional diversities of urolithiasis. Pediatr Nephrol. doi:10.10071/s00467-008-0960-5

  11. Morozumi M, Hossain RZ, Yamakawa K et al (2006) Gastrointestinal oxalic acid absorption in calcium-treated rats. Urol Res 34(3):168–172

    Article  CAS  PubMed  Google Scholar 

  12. Milosević D, Batinić D, Blau N et al (1998) Determination of urine saturation with computer program EQUIL 2 as a method for estimation of the risk of urolithiasis. J Chem Inf Comput Sci 38(4):646–650

    PubMed  Google Scholar 

  13. Youngjermchan P, Pumpaisanchai S, Ratchanon S et al (2006) Hypocitraturia and hypokaliuria: major metabolic risk factors for kidney stone disease. Chula Med J 50(9):605–621

    Google Scholar 

  14. Tosukhowong P, Sriboonlue P, Tungsanga K et al (2001) Potassium status of Northeast Thai constructors in three different geographic locations. J Med Assoc Thai 84(Suppl 1):S163–S172

    PubMed  Google Scholar 

  15. Levi M, McDonald LA, Preisig PA et al (1991) Chronic K depletion stimulates rat renal brush-border membrane Na-citrate cotransproter. Am J Physiol Renal Physiol 261:767–773

    Google Scholar 

  16. Napradit P, Pholpramool C, Jariyawat S et al (1995) Extrarenal potassium homeostasis after chronic potassium deficiency in rats. In: Japanese and Thai collaborative study group (ed) Lai Tai, sudden unexplained death syndrome, Tokyo, pp 71–104

  17. Halperin ML, Dhadli SC, Kamel KS (2006) Physiology of acid–base balance: links with kidney stone prevention. Semin Nephrol 26:441–446

    Article  CAS  PubMed  Google Scholar 

  18. Pak CYC (1994) Citrate and renal calculi; new insights and future directions. Am J Kidney Dis 17:420–425

    Google Scholar 

  19. Hamm LL (1990) Renal handling of citrate. Kidney Int 38(4):728–735

    Article  CAS  PubMed  Google Scholar 

  20. Domrongkitchaiporn S, Stitchantrakul W, Kochakarn W (2006) Causes of hypocitraturia in recurrent calcium stone formers: focusing on urinary potassium excretion. Am J Kidney Dis 48:546–554

    Article  CAS  PubMed  Google Scholar 

  21. Stitchantrakul W, Kochakarn W, Ruangraksa C et al (2007) Urinary risk factors for recurrent calcium stone formation in Thai stone formers. J Med Assoc Thai 90(4):688–698

    PubMed  Google Scholar 

  22. Thongboonkerd V, Kanlaya R, Sinchaikul S et al (2006) Proteomic identification of altered proteins in skeletal muscle during chronic potassium depletion: implications for hypokalemic myopathy. J Proteome Res 5:3326–3335

    Article  CAS  PubMed  Google Scholar 

  23. Tavichakorntrakool R, Sriboonlue P, Prasongwattana V et al (2009) Metabolic enzymes, antioxidants, and cytoskeletal proteins are significantly altered in vastus lateralis muscle of K-depleted cadaveric subjects. J Proteome Res 8:2586–2593

    Article  CAS  PubMed  Google Scholar 

  24. Kahn SR (1998) Importance of calcium phosphates in the development of calcium urolithiasis. In: Zahid Amjad (ed) Calcium phosphates in biological and industrial systems, USA, pp 253–275

  25. Breusegerm S, Takahashi H, Giral-Arnal H et al (2009) Differential regulation of the renal sodium/phosphate co-transporters NaPi-IIa, NaPi-IIC and PiT-2 in dietary potassium deficiency. Am J Physiol Renal Physiol. doi:10.1152/ajprenal.90765.2008

  26. Suga SI, Phillips MI, Ray PE et al (2001) Hypokalemia induces renal injury and alterations in vasoactive mediators that favor salt sensitivity. Am J Physiol Renal Physiol 281:F620–F629

    CAS  PubMed  Google Scholar 

  27. Tolins JP, Hostetter MK, Hostetter TH (1987) Hypokalemic nephropathy in the rat: role of ammonia in chronic tubular injury. J Clin Invest 79:1447–1458

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rayhan Zubair Hossain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yachantha, C., Hossain, R.Z., Yamakawa, K. et al. Effect of potassium depletion on urinary stone risk factors in Wistar rats. Urol Res 37, 311–316 (2009). https://doi.org/10.1007/s00240-009-0220-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-009-0220-6

Keywords

Navigation