Skip to main content

Advertisement

Log in

The future of stone research: rummagings in the attic, Randall’s plaque, nanobacteria, and lessons from phylogeny

  • Invited Review
  • Published:
Urological Research Aims and scope Submit manuscript

Abstract

The prevention or cure of stone disease will be achieved only by identifying biochemical, physiological and molecular mechanisms operating before the formation of a calculus. Yet, the gradual increase in the total number of papers devoted to the study of kidney stones that has occurred since the beginning of the 21st century can be attributed almost entirely to papers concerned with the investigation of factors associated with urolithiasis after stones have already formed. The need to prevent stones by discovering how the human body routinely stops their formation in those of us who do not suffer from them is therefore as exigent as ever and a new approach to investigating the causes of stones is urgently needed. In this paper, I develop the view that stone research will best progress by examining and understanding how healthy plants and animals control the formation of biominerals. In addition to structures like bones, teeth, shells and spines, many organisms spanning the entire phylogenetic tree form intra- and extracellular granules which are use as storage depots for calcium and other important ions, which they can reclaim to maintain homeostasis or to satisfy specific needs during periods of high demand, such as shell formation, moulting or skeletal development. These electron-dense granules, which also bear an uncanny resemblance to calcified nanobacteria, are remarkably similar in general structure, size and composition to particles observed in healthy human kidneys and in Randall’s plaque. Therefore, it is likely that the granules in human kidneys fulfil analogous functions to those in other organisms—particularly in calcium homeostasis. Their study in a large range of creatures has already provided a deep well of information about their structure, movement, composition, macromolecular content, synthesis and resorption, from which we can draw to quench our thirst for knowledge of basic mechanisms and events involved in the formation of human kidney stones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Chase R, Blanchard KC (2006) The snail’s love-dart delivers mucus to increase paternity. Proc Royal Soc Biol 273:1471–1475

    Article  Google Scholar 

  2. Franceschi VR, Nakata P (2005) Calcium oxalate in plants: formation and function. Annu Rev Plant Biol 56:41–71

    Article  CAS  PubMed  Google Scholar 

  3. Cohen MM (2006) The new bone biology: pathologic, molecular, and clinical correlates. Am J Med Genet A 140:2646–2706

    Article  PubMed  Google Scholar 

  4. Jackson FD, Garrido A, Schmitt JG, Chiappe LM, Dingus L, Loope DB (2004) Abnormal, multilayered titanosaur (Dinosauria sauropoda) eggs from in situ clutches at the Auca Mahuevo locality, Neuquen Province, Argentina. J Vert Paleontol 24:913–922

    Article  Google Scholar 

  5. Stini WA (1998) Calcium homeostasis and human evolution. Coll Antropol 22:411–425

    CAS  PubMed  Google Scholar 

  6. Addadi L, Weiner S (1992) Control and design principles in biological mineralization. Angew Chem Int Ed Engl 31:153–169

    Article  Google Scholar 

  7. Williams RJP (1998) Calcium: outside/inside homoeostasis and signalling. Biochim Biophys Acta 1448:153–165

    Article  CAS  PubMed  Google Scholar 

  8. Nitti I, Kida A, Fujibayashi H, Katayama H, Sugimura Y (2006) Calcium carbonate deposition in a cell wall sac formed in mulberry idioblasts. Protoplasma 228: 201–208

    Article  Google Scholar 

  9. Khan SR (1995) Experimental calcium oxalate nephrolithiasis and the formation of human urinary stones. Scan Microsc Int 9:89–101

    CAS  Google Scholar 

  10. Khan SR (1995) Mechanisms involved in calcium oxalate nephrolithiasis based on studies in an animal model. Ital J Miner Electrolyte Metab 9:3–9

    CAS  Google Scholar 

  11. Wyman AJ, Webb MA (2007) Calcium oxalate accumulation in Malpighian tubules of silkworm (Bombyx mori). In: Evan AP, Lingeman JE, Williams JC (eds) Renal stone disease, AIP conference proceedings, vol 900, Melville, New York, pp 407–411

  12. Akai H, Hakim RS, Kristensen NP (2003) Labial glands, silk and saliva. In: Kristensen NP (ed) Handbuch der zoologie, part 36, lepidoptera, moths and butterflies, volume 2: morphology, physiology and development. Walter de Gruyter, Berlin, pp 377–388

    Google Scholar 

  13. Freddi G, Gotoh Y, Mori T, Tsutsui I, Tsukada M (1994) Chemical structure and physical properties of Antheraea assama silk. J Appl Polym Sci 52:775–781

    Article  CAS  Google Scholar 

  14. Shamitha G, Rao AP (2006) Studies on the filament of tasar silkworm Antheraea mylitta D (Andra local ecorace). Curr Sci 90:1667–1671

    Google Scholar 

  15. Stay B, King A, Roth LM (1959) Calcium oxalate in the oöthecae of cockroaches. Ann Entomol Soc Am 53:79–86

    Article  Google Scholar 

  16. Ballan-Dufrançais C (2002) Localization of metals in pterygote insects. Microsc Res Tech 56:403–420

    Article  PubMed  Google Scholar 

  17. Böll S, Schmitt T, Burschka C, Schreier P, Schwappach P, Herrmann JV (2005) Calcium tartrate crystals in the midgut of the grape leafhopper. J Chem Ecol 31: 2847–2856

    Article  PubMed  Google Scholar 

  18. Ryall RL, Fleming DE, Grover PK, Chauvet MC, Dean CJ, Marshall VR (2000) The hole truth: Intracrystalline proteins and calcium oxalate kidney stones. Mol Urol 4: 391–402

    CAS  PubMed  Google Scholar 

  19. Ryall RL, Fleming DE, Doyle IR, Evans NA, Dean CJ, Marshall VR (2001) Intracrystalline proteins and the hidden ultrastructure of calcium oxalate urinary crystals: implications for kidney stone formation. J Struct Biol 134:5–14

    Article  Google Scholar 

  20. Feynman RP (1960) There’s plenty of room at the bottom. An invitation to enter a new field of physics. http://www.zyvex.com/nanotech/feynman.html

  21. Waku Y, Sumimoto K (1974) Metamorphosis of midgut epithelial cells in the silkworm (Bombyx mori) with special regard to the calcium salt deposits in the cytoplasm. II. Electron microscopy. Tissue Cell 6:127–136

    Article  CAS  PubMed  Google Scholar 

  22. Desouky MA (2006) Tissue distribution and subcellular localization of trace metals in the pond snail Lymnaea stagnalis with special reference to the role of lysosomal granules in metal sequestration. Aquat Toxicol 77:143–152

    Article  CAS  PubMed  Google Scholar 

  23. Maddrell SHP, Whittembury G, Mooney RL, Harrison JB, Overton JA, Rodriguez B (1991) The fate of calcium in the diet of Rhodnius prolixus: storage in concretion bodies in the malpighian tubules. J Exp Biol 157: 483–502

    CAS  PubMed  Google Scholar 

  24. Brown BE (1982) The form and function of metal-containing “granules” in invertebrate tissues. Biol Rev 57:621–667

    Article  CAS  Google Scholar 

  25. Simkiss K (1976) Intracellular and extracellular routes in biomineralization. Symp Soc Exp Biol 30:423–444

    CAS  Google Scholar 

  26. Štrus J, Compere P (1996) Ultrastructural analysis of the integument during the moult cycle in Ligia italica (Crustacea Isopoda). Pflügers Arch Eur J Physiol 431(Suppl):R251–R252

    Google Scholar 

  27. Davis WL, Jones RG, Knight JP, Hagler HK (1982) An electron microscopic histochemical and X-ray microprobe study of spherites in a mussel. Tissue Cell 14:61–67

    Article  CAS  PubMed  Google Scholar 

  28. Humbert W (1974) Localisation, structure et genèse des concretions minérales dans le mésentéron des Collemboles Tomoceridae (Insecta, Collembola). Z Morph Ökol Tiere 78:93–109

    Article  Google Scholar 

  29. Gouranton J (1968) Composition, structure et mode de formation des concrétions minérales dans l’intestin moyen des Homoptères Cercopides. J Cell Biol 37: 316–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Becker GL, Chen C-H, Greenawalt JW, Lehninger AL (1974) Calcium phosphate granules in the hepatopancreas of the Blue Crab, Callinectes sapidus. J Cell Biol 61:316–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gallien I, Caurant F, Bordes M, Bustamante P, Miramand P, Fernandez B, Quellard N, Babin P (2001) Cadmium-containing granules in kidney tissues of the Atlantic white-sided dolphin (Lagenorhyncus acutus) off the Faroe Islands. Comp Biochem Physiol Part C Toxicol Pharmacol 130:389–395

    Article  CAS  Google Scholar 

  32. Simkiss K, Taylor MG (1994) Calcium magnesium phosphate granules: atomistic simulations explaining cell death. J Exp Biol 190:131–139

    CAS  PubMed  Google Scholar 

  33. Taylor M, Simkiss K, Greaves GN (1986) Amorphous structure of intracellular mineral granules. Biochem Soc Trans 14:549–552

    Article  CAS  PubMed  Google Scholar 

  34. Silverman H, Richard PE, Goddard RH, Dietz TH (1988) Intracellular formation of calcium concretions by phagocytic cells in freshwater mussels. Can J Zool 67:198–207

    Article  Google Scholar 

  35. Byrne M, Vesk PA (2000) Elemental composition of mantle tissue granules in Hybridella depressa (Unionida) from the Hawkesbury-Nepean River system, Australia: inferences from catchment chemistry. Mar Freshwater Res 51:183–192

    Article  CAS  Google Scholar 

  36. Hazelton SR, Felgenhauer BE, Spring JH (2001) Ultrastructural changes in the Malpighian tubules of the house cricket, Acheta domesticus, at the onset of diuresis: a time study. J Morphol 247:80–92

    Article  CAS  PubMed  Google Scholar 

  37. Ahearn GA, Mandal PK, Mandal A (2004) Mechanisms of heavy-metal sequestration and detoxification in crustaceans: a review. J Comp Physiol B 174:439–452

    Article  CAS  PubMed  Google Scholar 

  38. Graf F (1971) Dynamique du calcium dans l’épithélium des caecums postérieurs d’Orchestia cavimana Heller (Crustacé Amphiode). Rôle de l’espace intercellulaire. C R Acad Sci Paris 273:1828–1831

    CAS  Google Scholar 

  39. Nieland ML, von Brand T (1969) Electron microscopy of cestode calcareous corpuscle formation. Exp Parasitol 24:279–289

    Article  CAS  PubMed  Google Scholar 

  40. Pullen JSH, Rainbow PS (1991) The composition of pyrophosphate heavy metal detoxification granules in barnacles. J Exp Mar Biol Ecol 150:249–266

    Article  CAS  Google Scholar 

  41. Pigino G, Migliorini M, Paccagnini E, Bernini F, Leonzio C (2005) Fine structure of the midgut and Malpighian papillae in Campodea (Monocampa) quilisi Silvestri, 1932 (Hexapoda, Diplura) with special reference to the metal composition and physiological significance of midgut intracellular electron-dense granules. Tissue Cell 37:223–232

    Article  CAS  PubMed  Google Scholar 

  42. Abolinš-Krogis A (1970) Electron microscope studies of the intracellular origin and formation of calcifying granules and calcium spherites in the hepatopancreas of the snail Helix pomatia. Z Zellforsch Mikrosk Anat 108:501–515

    Article  PubMed  Google Scholar 

  43. Viarengo A, Nott JA (1993) Mechanisms of heavy metal cation homoeostasis in marine invertebrates. Comp Biochem Physiol 104C:335–372

    Google Scholar 

  44. Vandenbulcke F, Grelle C, Fabre M-C, Descamps M (1998) Implication of the midgut of the centipede Lithophorbius forficatus in the heavy metal detoxification process. Ecotoxicol Environ Saf 41:258–268

    Article  CAS  PubMed  Google Scholar 

  45. Barka S (2007) Insoluble detoxification of trace metals in a marine copepod Tigriopus brevicornis (Müller) exposed to copper, zinc, nickel, cadmium, silver and mercury. Ecotoxicol 16: 491–502

    Article  CAS  Google Scholar 

  46. Hopkin SP (1989) Ecophysiology of metals in terrestrial invertebrates. Elsevier Applied Science, New York Cited in [44]

    Google Scholar 

  47. Ziegler A, Fabritius H, Hagedorn M (2005) Microscopical and functional aspects of calcium-transport and deposition in terrestrial isopods. Micron 36:137–153

    Article  CAS  PubMed  Google Scholar 

  48. Fabritius H, Walther P, Ziegler A (2005) Architecture of the organic matrix in the sternal CaCO3 deposits of Porcellio scaber (Crustacea, Isopoda). J Struct Biol 150:190–199

    Article  CAS  PubMed  Google Scholar 

  49. Raz S, Testeniere O, Hecker A, Weiner S, Luquet G (2002) Stable amorphous calcium carbonate is the main component of the calcium storage structures of the crustacean Orchestia cavimana. Biol Bull 203: 269–274

    Article  CAS  PubMed  Google Scholar 

  50. Docampo R, de Souza W, Miranda K, Rohloff P, Moreno SN (2005) Acidocalcisomes—conserved from bacteria to man. Nat Rev Microbiol 3:251–261

    Article  CAS  PubMed  Google Scholar 

  51. Miranda K, Benchimol M, Docampo R, de Souze W (2000) The fine structure of acidocalcisomes in Trypanosoma cruzi. Parasitol Res 86:373–384

    Article  CAS  PubMed  Google Scholar 

  52. Ruiz FA, Lea CR, Oldfield E, Docampo R (2004) Human platelet dense granules contain polyphosphate and are similar to acidocalcisomes of bacteria and unicellular eukaryotes. J Biol Chem 279:44250–44257

    Article  CAS  PubMed  Google Scholar 

  53. Weinbach EC, Von Brand T (1967) Formation, isolation and composition of dense granules from mitochondria. Biochim Biophys Acta 148:256–266

    Article  CAS  PubMed  Google Scholar 

  54. Khan SR (1997) Calcium phosphate/calcium oxalate crystal association in urinary stones: implications for heterogeneous nucleation of calcium oxalate. J Urol 157:376–383

    Article  CAS  PubMed  Google Scholar 

  55. Khan SR, Finlayson B, Hackett R (1984) Renal papillary changes in patient with calcium oxalate lithiasis. Urology 23: 194–199

    Article  CAS  PubMed  Google Scholar 

  56. McKee MD, Nanci A, Khan SR (1995) Ultrastructural immunodetection of osteopontin and osteocalcin as major matrix components of renal calculi. J Bone Miner Res 10:1913–1929

    Article  CAS  PubMed  Google Scholar 

  57. Kajander EO, Kuronen I, Åkerman K, Pelttari A, Çiftçioglu N (1997) Nanobacteria from blood, the smallest culturable autonomously replicating agent on earth. Proc SPIE 3111:420–428

    Article  CAS  Google Scholar 

  58. Kajander EO, Çiftçioglu N (1998) Nanobacteria: an alternative mechanism for pathogenic intra- and extracellular calcification and stone formation. PNAS 95:8274–8279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ciftcioglu N, McKay DS, Mathew G, Kajander EO (2006) Nanobacteria: fact or fiction? Characteristics, detection, and medical importance of novel self-replicating, calcifying nanoparticles. J Invest Med 54:385–394

    Article  CAS  Google Scholar 

  60. Çiftçioglu N, Björklund M, Kuorikoski K, Bergström K, Kajander EO (1999) Nanobacteria: an infectious cause for kidney stone formation. Kidney Int 56:1893–1898

    Article  PubMed  Google Scholar 

  61. Kajander EO, Ciftcioglu N, Aho K, Garcia-Cuerpo E (2003) Characteristics of nanobacteria and their possible role in stone formation. Urol Res 31:47–54

    PubMed  Google Scholar 

  62. Åkerman KK, Kuikka JT, Çiftçioglu N, Parkkinen J, Bergstroem KA, Kuronen I, Kajander EO (1997) Radiolabeling and in vivo distribution of nanobacteria in rabbit. Proc SPIE 3111:436–442 Cited in [59]

    Article  Google Scholar 

  63. Garcia Cuerpo E, Olavi Kajander E, Ciftcioglu N, Lovaco Castellano F, Correa C, Gonzalez J, Mampaso F, Liano F, Garcia de Gabiola E, Escudero Barrilero A (2000) Nanobacteria. An experimental neo-lithogenesis model. Arch Esp Urol 3:291–303 Cited in [61]

    Google Scholar 

  64. Shiekh FA, Khullar M, Singh SK (2003) Lithogenesis: induction of renal calcification by nanobacteria. Urol Res 20:1–5

    Google Scholar 

  65. Hjelle JT, Miller-Hjelle MA, Poxton IR, Kajander EO, Ciftcioglu N, Jones ML, Caughey RC, Brown R, Millikin PD, Darras FS (2000) Endotoxin and nanobacteria in polycystic kidney disease. Kidney Int 57:2360–2374

    Article  CAS  PubMed  Google Scholar 

  66. Ciftcioglu N, Miller-Hjelle MA, Hjelle JT, Kajander EO (2002) Inhibition of nanobacteria by antimicrobial drugs as measured by a modified microdilution method. Antimicrob Agents Chemother 46:2077–2086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Silay MS, Miroglu C (2007) The risk of urolithiasis recurrence may be reduced with anti-nanobacterial therapy. Med Hypotheses 68:1348–1350

    Article  PubMed  Google Scholar 

  68. Drancourt M, Jacomo V, Lépidi H, Lechevallier E, Grisoni V, Coulange C, Ragni E, Alasia C, Dussol B, Berland Y, Raoult D (2003) Attempted isolation of Nanobacterium sp. microorganisms from upper urinary tract stones. J Clin Microbiol 41:368–372

    Article  PubMed  PubMed Central  Google Scholar 

  69. Cisar JO, Xu D-Q, Thompson J, Swaim W, Hu L, Kopecko DJ (2000) An alternative interpretation of nanobacteria-induced biomineralization. PNAS 97:11511–11515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Vali H, McKee MD, Çiftçioglu N, Sears SK, Plows FL, Chevet E, Ghiabi P, Plavsic M, Kajander EO, Zare RN (2001) Nanoforms: a new type of protein-associated mineralization. Geochim Cosmochim Acta 65:63–74

    Article  CAS  Google Scholar 

  71. Walsh D, Mann S (1995) Fabrication of hollow porous shells of calcium carbonate from self-organizing media. Nature 377:320–323

    Article  CAS  Google Scholar 

  72. Kulak AN, Iddon P, Li Yuting, Armes SP, Cölfen H, Paris O, Wilson RM, Meldrum FC (2007) Continuous structural evolution of calcium carbonate particles: a unifying model of copolymer-mediated crystallization. J Am Chem Soc 129:3729–3736

    Article  CAS  PubMed  Google Scholar 

  73. Cölfen H, Antonietti M (2005) Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew Chemie 44:5576–5591

    Article  Google Scholar 

  74. Höhling HJ, Arnold S, Barckhaus RH, Plate U, Wiesmann HP (1995) Structural relationship between the primary crystal formations and the matrix macromolecules in different hard tissues. Discussion of a general principle. Connect Tissue Res 33:171–178

    Article  PubMed  Google Scholar 

  75. Bonucci E (2002) Crystal ghosts and biological mineralization: fancy spectres in an old castle, or neglected structures worthy of belief? J Bone Miner Metab 20:249–265

    Article  PubMed  Google Scholar 

  76. Henlé FJG (1863) Zur Anatomie der Niere (On the anatomy of the kidney). Goettingen Nachrichten, 125–135 cited in [78, 79]

  77. Beer E (1904) Lime deposits especially the so-called “kalkmetastasen”, in the kidney. J Pathol Bacteriol 9:225–233

    Article  Google Scholar 

  78. Stout HA, Akin RH, Morton E (1955) Nephrocalcinosis in routine necropsies; its relationship to stone formation. J Urol 74:8–22

    CAS  PubMed  Google Scholar 

  79. Anderson L, McDonald JR (1946) The origin, frequency, and significance of microscopic calculi in the kidney. Surg Gynecol Obstet 82:275–282

    CAS  PubMed  Google Scholar 

  80. Carr RJ (1954) A new theory on the formation of renal calculi. Br J Urol 26:105–117

    Article  CAS  PubMed  Google Scholar 

  81. Bruwer A (1979) Primary renal calculi: Anderson-Carr-Randall progression? Am Roentgen Ray Soc 132:751–758

    Article  CAS  Google Scholar 

  82. Bennington JL, Haber SL, Smith JV, Warner NE 1964) Crystals of calcium oxalate in the human kidney. Am J Clin Pathol 41:8–14

    Article  CAS  PubMed  Google Scholar 

  83. Verkoelen CF (2006) Crystal retention in renal stone disease: A crucial role for the glycosaminoglycan hyaluronan? J Am Soc Nephrol 17:1673–1687

    Article  CAS  PubMed  Google Scholar 

  84. Randall A (1937) The initiating lesions of renal calculus. Surg Gynecol Obstet 64:201–208

    Google Scholar 

  85. Randall A (1940) Papillary pathology as a precursor of primary renal calculus. J Urol 44:580–589

    CAS  Google Scholar 

  86. Low RK, Stoller ML (1997) Endoscopic mapping of renal papillae for Randall’s plaques in patients with urinary stone disease. J Urol 158:2062–2064

    Article  CAS  PubMed  Google Scholar 

  87. Evan AP, Lingeman JE, Coe FL, Parks JH, Bledsoe SB, Shao Y, Sommer AJ, Paterson RF, Kuo RL, Grynpas M (2003) Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest 111:607–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Evan A, Lingeman J, Coe FL, Worcester E (2006) Randall’s plaque: Pathogenesis and role in calcium oxalate nephrolithiasis. Kidney Int 69:1313–1318

    Article  CAS  PubMed  Google Scholar 

  89. Kuo RL, Lingeman JE, Evan AP, Paterson RF, Parks JH, Bledsoe SB, Munch LC, Coe FL (2003) Urine calcium and volume predict coverage of renal papilla by Randall’s plaque. Kidney Int 64:2150–2154

    Article  PubMed  Google Scholar 

  90. Kim SC, Coe FL, Tinmouth WW, Kuo RL, Paterson RF, Parks JH, Munch LC, Evan AP, Lingeman JE (2005) Stone formation is proportional to papillary surface coverage by Randall’s plaque. J Urol 173:117–119

    Article  CAS  PubMed  Google Scholar 

  91. Cifuentes-Delatte LD, Miñón-Cifuentes J, Medina JA (1987) New Studies on papillary calculi. J Urol 137:1024–1029

    CAS  PubMed  Google Scholar 

  92. Evan AP, Coe FL, Lingeman JE, Shao Y, Sommer AJ, Bledsoe SB, Anderson JC, Worcester EM (2007) Mechanism of formation of human calcium oxalate renal stones on Randall’s plaque. Anat Rec 290:1315–1323

    Article  CAS  Google Scholar 

  93. Weller RO, Nester B, Cooke SAR (1972) Calcification in the renal papilla: an electron microscope study. J Pathol 107:211–216

    Article  CAS  PubMed  Google Scholar 

  94. Haggitt RC, Pitcock JA (1971) Renal medullary calcifications: a light and electron microscopic study. J Urol 106(3):342–347

    CAS  PubMed  Google Scholar 

  95. Matlaga BR, Coe FL, Evan AP, Lingeman JE (2007) The role of Randall’s plaques in the pathogenesis of calcium stones. J Urol 177:31–38

    Article  PubMed  Google Scholar 

  96. Addadi L, Raz S, Weiner S (2003) Taking advantage of disorder: Amorphous calcium carbonate and its role in biomineralization. Adv Mater 15:959–970

    Article  CAS  Google Scholar 

  97. Grynpas MD, Omelon S (2007) Transient precursor strategy or very small biological apatite crystals? Bone 41:162–164

    Article  CAS  PubMed  Google Scholar 

  98. Coe FL (2007) Introduction: kidney stone research, lessons from human studies. In: Evan AP, Lingeman JE, Williams JC (eds) Renal stone disease, AIP conference proceedings, vol 900, Melville, New York, pp 3–11

  99. Naito Y, Ohtawara Y, Kageyama S, Nakano M, Ichiyama A, Fujita M, Suzuki K, Kawabe K, Kino I (1997) Morphological analysis of renal cell culture models of calcium phosphate stone formation. Urol Res 25:59–65

    Article  CAS  PubMed  Google Scholar 

  100. Kageyama S, Ohtawara Y, Fujita M, Watanabe T, Ushiyama T, Suzuki K, Naito Y, Kawabe K (1996) Microlith formation in vitro by Madin Darby canine kidney (MDCK) cells. Int J Urol 3:23–26

    Article  CAS  PubMed  Google Scholar 

  101. Huitema LFA, van Weeren PR, van Balkom BW, Visser T, van der Lest CH, Barneveld A, Helms JB, Vaandrager AB (2007) Soluble factors released by ATDC5 cells affect the formation of calcium phosphate crystals. Biochim Biophys Acta (Epub ahead of print)

  102. Fan J, Chandhoke PS (1999) Examination of crystalluria in freshly voided urines of recurrent calcium stone formers and normal individuals using a new filter technique. J Urol 161:1685–1688

    Article  CAS  PubMed  Google Scholar 

  103. Nossal GJV (1975) Medical science and human goals. Edward Arnold Pty Ltd, Australia, p 8

    Google Scholar 

  104. Beecher HK (1964) Ethics and clinical research. New Engl J Med 274:1354–1360

    Article  Google Scholar 

  105. Erasmus DA (1967) Ultrastructural observations in the reserve bladder system of Cyathocotyle bushiensis Khan 1962 (Trematoda, Strigeoiden) with special reference to lipid excretion. J Parasitol 53:525–536

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The assistance of Grant No. NDDK 1 R01 DK064050-01A1) in the preparation of this review is gratefully acknowledged. I would like to thank the following colleagues: Associate Professor Mary Alice Webb, who kindly provided the image presented in Figure 3, as well as other unpublished information about Bombyx mori; Dr. Andy Evan who provided the image in Figure 8; Miss Magali Chauvet and Dr. Caroline Dean who isolated the plant crystals shown in Figure 9 and Dr. David Fleming who took the scanning electron micrographs of them. Finally, I wish to express my gratitude to my husband, Dr. Robert Ainslie, who listened with patience to my almost daily announcements that I had discovered yet another creature that made calcium granules, and who, with his wonderful scientific insight helped ease my way through the fascinating journey of literary revelation recounted here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosemary Lyons Ryall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryall, R.L. The future of stone research: rummagings in the attic, Randall’s plaque, nanobacteria, and lessons from phylogeny. Urol Res 36, 77–97 (2008). https://doi.org/10.1007/s00240-007-0131-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-007-0131-3

Keywords

Navigation