Skip to main content
Log in

Estimating the Rate of Adaptive Molecular Evolution When the Evolutionary Divergence Between Species is Small

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

We investigate the extent by which the estimates of the rate of adaptive molecular evolution obtained by extending the McDonald–Kreitman test are biased if the species, subjected to analysis, diverged recently. We show that estimates can be biased if the nucleotide divergence between the species is low relative to within species variation, and that the magnitude of the bias depends on the rate of adaptive evolution and the distribution of fitness effects of new mutations. Bias appears to be because of three factors: (1) misattribution of polymorphism to divergence; (2) the contribution of ancestral polymorphism to divergence; and (3) different rates of fixation of neutral and advantageous mutations. If there is little adaptive molecular evolution, then slightly deleterious mutations inflate estimates of the rate of adaptive evolution, because these contribute proportionately more to polymorphism than to nucleotide divergence than neutral mutations. However, if there is substantial adaptive evolution, polymorphism contributing to apparent divergence may downwardly bias estimates. We propose a simple method for correcting the different contributions of slightly deleterious and neutral mutations to polymorphism and divergence, and apply it to datasets from several species. We find that estimates of the rate of adaptive molecular evolution from closely related species may be underestimates by ~10% or more. However, after the contribution of polymorphism to divergence is removed, the rate of adaptive evolution may still be overestimated as a consequence of ancestral polymorphism and time for fixation effects. This bias may be substantial if branch lengths are less than 10N e generations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akey JM, Eberle MA, Rieder MJ, Carlson CS, Shriver MD (2004) Population history and natural selection shape patterns of genetic variation in 132 genes. PLoS Biol 2:e286

    Article  PubMed  Google Scholar 

  • Andolfatto P (2005) Adaptive evolution of non-coding DNA in Drosophila. Nature 437:1149–1152

    Article  PubMed  CAS  Google Scholar 

  • Bachtrog D (2008) Similar rates of protein adaptation in Drosophila miranda and D. melanogaster, two species with different current effective population sizes. BMC Evol Biol 8:334

    Article  PubMed  Google Scholar 

  • Benton MJ, Donoghue PCJ (2007) Paleontological evidence to date the tree of life. Mol Biol Evol 24:26–53

    Article  PubMed  CAS  Google Scholar 

  • Bierne N, Eyre-Walker A (2004) The genomic rate of adaptive amino acid substitution in Drosophila. Mol Biol Evol 21:1350–1360

    Article  PubMed  CAS  Google Scholar 

  • Boyko AR, Williamson SH, Indap AR, Degenhardt JD, Hernandez RD, Lohmueller KE et al (2008) Assessing the evolutionary impact of amino acid mutations in the human genome. PLoS Genet 4:e1000083

    Article  PubMed  Google Scholar 

  • Charlesworth B (1994) The effect of background selection against deleterious mutations on weakly selected, linked variants. Genet Res 63:213–227

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth J, Eyre-Walker A (2006) The rate of adaptive evolution in enteric bacteria. Mol Biol Evol 23:1348–1356

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth J, Eyre-Walker A (2008) The McDonald–Kreitman test and slightly deleterious mutations. Mol Biol Evol 25:1007–1015

    Article  PubMed  CAS  Google Scholar 

  • Eyre-Walker A, Keightley PD (2009) Estimating the rate of adaptive molecular evolution in the presence of slightly deleterious mutations and population size change. Mol Biol Evol 26:2097–2108

    Article  PubMed  CAS  Google Scholar 

  • Eyre-Walker A, Keightley PD, Smith NGC, Gaffney D (2002) Quantifying the slightly deleterious model of molecular evolution. Mol Biol Evol 19:2142–2149

    Article  PubMed  CAS  Google Scholar 

  • Fay J, Wycoff GJ, Wu C-I (2001) Positive and negative selection on the human genome. Genetics 158:1227–1234

    PubMed  CAS  Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Clarendon Press, Oxford

    Google Scholar 

  • Gossmann TI, Song B-H, Windsor AJ, Mitchell-Olds T, Dixon CJ, Kapralov MV, Filatov DA, Eyre-Walker A (2010) Genome wide analyses reveal little evidence for adaptive evolution in many plant species. Mol Biol Evol 27:1822–1832

    Article  PubMed  CAS  Google Scholar 

  • Haddrill PR, Bachtrog D, Andolfatto P (2008) Positive and negative selection on noncoding DNA in Drosophila simulans. Mol Biol Evol 25:1825–1834

    Article  PubMed  CAS  Google Scholar 

  • Halligan DL, Oliver F, Eyre-Walker A, Harr B, Keightley PD (2010) Evidence for pervasive adaptive protein evolution in wild mice. PLoS Genet 6:e1000825

    Article  PubMed  Google Scholar 

  • Ingvarsson PK (2010) Natural selection on synonymous and nonsynonymous mutations shapes patterns of polymorphism in Populus tremula. Mol Biol Evol 27:650–660

    Article  PubMed  CAS  Google Scholar 

  • Keightley PD, Eyre-Walker A (2007) Joint inference of the distribution of fitness effects of deleterious mutations and population demography based on nucleotide polymorphism frequencies. Genetics 177:2251–2261

    Article  PubMed  CAS  Google Scholar 

  • Kousathanas A, Oliver F, Halligan DL, Keightley PD (2011) Positive and negative selection on noncoding DNA close to protein-coding genes in wild house mice. Mol Biol Evol 28:1183–1191

    Article  PubMed  CAS  Google Scholar 

  • McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–654

    Article  PubMed  CAS  Google Scholar 

  • Michaux J, Reyes A, Catzeflis F (2001) Evolutionary history of the most speciose mammals: molecular phylogeny of muroid rodents. Mol Biol Evol 18:2017–2031

    Article  PubMed  CAS  Google Scholar 

  • Powell JR, DeSalle R (1995) Drosophila molecular phylogenies and their uses. Evol Biol 28:87–138

    Article  CAS  Google Scholar 

  • Sawyer SA, Hartl DL (1992) Population genetics of polymorphism and divergence. Genetics 132:1161–1176

    PubMed  CAS  Google Scholar 

  • Schneider A, Charlesworth B, Eyre-Walker A, Keightley PD (2011) A method for inferring the rate of occurrence and fitness effects of advantageous mutations. Genetics 189:1427–1437

    Article  PubMed  Google Scholar 

  • Shapiro JA, Huang W, Zhang C, Hubisz MJ, Lu J, Turissini DA, Fang S, Wang H-Y, Hudson RR, Nielsen R, Chen Z, Wu C-I (2007) Adaptive genic evolution in the Drosophila genomes. Proc Natl Acad Sci USA 104:2271–2276

    Article  PubMed  Google Scholar 

  • Welch JJ (2006) Estimating the genome-wide rate of adaptive protein evolution in Drosophila. Genetics 173:821–837

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

PDK acknowledges the grant support from the BBSRC and Wellcome Trust. The authors thank Dan Halligan for helpful comments in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter D. Keightley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keightley, P.D., Eyre-Walker, A. Estimating the Rate of Adaptive Molecular Evolution When the Evolutionary Divergence Between Species is Small. J Mol Evol 74, 61–68 (2012). https://doi.org/10.1007/s00239-012-9488-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-012-9488-1

Keywords

Navigation