Skip to main content
Log in

Allelic Variation in Malawi Cichlid Opsins: A Tale of Two Genera

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The role of sequence variation in the spectral tuning of color vision is well established in many systems. This includes the cichlids of Lake Victoria where sequence variation has been linked to environmental light gradients and speciation. The cichlids of Lake Malawi are a similar model for visual evolution, but the role of gene sequence variation in visual tuning between closely related species is unknown. This work describes such variation in multiple species of two rock-dwelling genera: Metriaclima and Labidochromis. Genomic DNA for seven cone opsin genes was sequenced and the structure of the opsin proteins was inferred. Retinal binding pocket polymorphisms were identified and compared to available data regarding spectral absorbance shifts. Sequence variation with known or potential effects on absorbance spectra were found in four genes: SWS1 (UV sensitive), SWS2B (violet sensitive), RH2Aβ (green sensitive), and LWS (red sensitive). Functional variation was distributed such that each genus had both a variable short-wavelength and long-wavelength sensitive opsin. This suggests spectral tuning is important at the margins of the cichlid visual spectrum. Further, there are two SWS1 opsin alleles that differ in sensitivity by 10 nm and are >2 MY divergent. One of these occurs in a haplotype block >1 kb. Potential haplotype blocks were found around the RH2 opsin loci. These data suggest that molecular diversification has resulted in functionally unique alleles and changes to the visual system. These data also suggest that opsin sequence variation tunes spectral sensitivities between closely related species and that the specific regions of spectral tuning are genus-specific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Asenjo AB, Rim J, Oprian DO (1994) Molecular determinants of human red/green color discrimination. Neuron 12:1131–1138

    Article  CAS  PubMed  Google Scholar 

  • Azuma Y, Kumuzawa Y, Miya M, Mabuchi K, Nishida M (2008) Mitogenomic evaluation of the historical biogeography of cichlids toward reliable dating of teleostean divergences. BMC Evol Biol 8:215

    Google Scholar 

  • Carleton KL, Harosi FI, Kocher TD (2000) Visual pigments of African cichlids: evidence for ultraviolet vision from microspectrophotometry and DNA sequences. Vision Res 40:879–890

    Article  CAS  PubMed  Google Scholar 

  • Carleton KL, Parry JWL, Bowmaker JK, Hunt DM, Seehausen O (2005a) Color vision and speciation in Lake Victoria cichlids of the genus Pundamilia. Mol Ecol 14:4341–4353

    Article  CAS  PubMed  Google Scholar 

  • Carleton KL, Spady T, Cote RH (2005b) Rod and cone opsin families differ in spectral tuning domains but not signal transducing domains as judged by saturated evolutionary trace analysis. J Mol Evol 61:75–89

    Article  CAS  PubMed  Google Scholar 

  • Carleton KL, Spady TC, Kocher TD (2006) Visual communication in East African cichlid fishes: diversity in a phylogenetic context. In: Ladich F, Collin SP, Moller P, Kapoor BG (eds) Communication in fishes. Science Publishers Inc, Enfield, NH, pp 485–515

    Google Scholar 

  • Chang BSW, Crandall KA, Carulli JP, Hartl D (1995) Opsin phylogeny and evolution: a model for blue shifts in wavelength regulation. Mol Phylogenet Evol 4:31–43

    Article  CAS  PubMed  Google Scholar 

  • Cowing JA, Poopalasundaram S, Wilkie SE, Bowmaker JK, Hunt DM (2002) Spectral tuning and evolution of short wave-sensitive cone pigments in cottoid fish from Lake Baikal. Biochemistry 41:6019–6025

    Article  CAS  PubMed  Google Scholar 

  • Danley PD, Kocher TD (2001) Speciation in rapidly diverging systems: lessons from Lake Malawi. Mol Ecol 10:1075–1086

    Article  CAS  PubMed  Google Scholar 

  • Ebrey T, Koutalos Y (2001) Vertebrate photoreceptors. Prog Retin Eye Res 20:49–94

    Article  CAS  PubMed  Google Scholar 

  • Genner MJ, Turner GF (2005) The mbuna cichlids of Lake Malawi: a model for rapid speciation and adaptive radiation. Fish Fish 6:1–34

    Google Scholar 

  • Genner MJ, Seehausen O, Lunt DH, Joyce DA, Shaw PW, Carvalho GR, Turner GF (2007) Age of cichlids: new dates for ancient lake fish radiations. Mol Biol Evol 24:1269–1282

    Article  CAS  PubMed  Google Scholar 

  • Hofmann CM, Carleton KL (2009) Gene duplication and differential gene expression play an important role in the diversification of visual pigments in fish. Integr Comp Biol 49:630–643

    Article  CAS  Google Scholar 

  • Hofmann CM, O’Quinn KE, Marshall NJ, Cronin TW, Seehausen O, Carleton KL (2009) The eyes have it: regulatory and structural changes both underlie cichlid visual pigment diversity. PLOS Biol 7:e1000266

    Article  PubMed  Google Scholar 

  • Jordan R, Kellogg K, Howe D, Juanes F, Stauffer JRJ, Loew E (2006) Photopigment spectral absorbance of Lake Malawi cichlids. J Fish Biol 68:1291–1299

    Article  Google Scholar 

  • Kawata M, Shoji A, Kawamura S, Seehausen O (2007) A genetically explicit model of speciation by sensory drive within a continuous population in aquatic environments. BMC Evol Biol 7:99

    Google Scholar 

  • Kidd MR, Danley PD, Kocher TD (2006) A direct assay of female choice in cichlids: all the eggs in one basket. J Fish Biol 68:373–384

    Article  Google Scholar 

  • Kirkpatrick M, Ravigne V (2002) Speciation by natural and sexual selection: models and experiments. Am Nat 159:S22–S35

    Article  PubMed  Google Scholar 

  • Kornfield I, Smith PF (2000) African cichlid fishes: model systems for evolutionary biology. Annu Rev Ecol Syst 31:163–196

    Article  Google Scholar 

  • Lande R (1981) Models of speciation by sexual selection on polygenic traits. Proc Natl Acad Sci USA 78:3721–3725

    Article  CAS  PubMed  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Loh Y-HE, Katz LS, Mims MC, Kocher TD, Yi SV, Streelman JT (2008) Comparative analysis reveals signatures of differentiation and genomic polymorphisms in Lake Malawi cichlids. Genome Biol 9:R113

    Google Scholar 

  • Maan ME, Seehausen O, Soderberg L, Johnson L, Ripmeester EAP, Mrosso HDJ, Taylor MI, van Dooren TJM, van Alphen JJM (2004) Intraspecific sexual selection on a speciation trait, male coloration, in the Lake Victoria cichlid Pundamilia nyererei. Proc R Soc Lond B Biol 271:2445–2452

    Article  Google Scholar 

  • Maan ME, Hofker KD, van Alphen JJM, Seehausen O (2006) Sensory drive in cichlid speciation. Am Nat 167:947–954

    Article  Google Scholar 

  • Mayr E (1982) Speciation and macroevolution. Evolution 36:1119–1132

    Article  Google Scholar 

  • Palczewski K, Kumusaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745

    Article  CAS  PubMed  Google Scholar 

  • Parry JWL, Carleton KL, Spady T, Carboo A, Hunt DM, Bowmaker JK (2005) Mix and match color vision: tuning spectral sensitivity by differential opsin gene expression in Lake Malawi cichlids. Curr Biol 15:1734–1739

    Article  CAS  PubMed  Google Scholar 

  • Porter ML, Bok MJ, Robinson PR, Cronin TW (2009) Molecular diversity of visual pigments in Stomatopoda (Crustacea). Vis Neurosci 26:255–265

    Article  PubMed  Google Scholar 

  • Schluter D (2001) Ecology and the origin of species. Trends Ecol Evol 16:372–380

    Article  PubMed  Google Scholar 

  • Seehausen O (2004) Hybridization and adaptive radiation. Trends Ecol Evol 19:198–207

    Article  PubMed  Google Scholar 

  • Seehausen O, van Alphen JJM (1998) The effect of male coloration on female mate choice in closely related Lake Victoria cichlids (Haplochromis nyererei complex). Behav Ecol Sociobiol 42:1–8

    Article  Google Scholar 

  • Seehausen O, van Alphen JJM (1999) Can sympatric speciation by disruptive sexual selection explain rapid evolution of cichlid diversity in Lake Victoria? Ecol Lett 2:262–271

    Article  Google Scholar 

  • Seehausen O, van Alphen JJM, Witte F (1997) Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 277:1808–1811

    Article  CAS  Google Scholar 

  • Seehausen O, Terai Y, Magalhaes IS, Carleton KL, Mrosso HDJ, Miyagi R, van der Sluijs I, Schneider MV, Maan ME, Tachida H, Imai H (2008) Speciation through sensory drive in cichlid fish. Nature 455:620–627

    Article  CAS  PubMed  Google Scholar 

  • Spady TC, Seehausen O, Loew ER, Jordan RC, Kocher TD, Carleton KL (2005) Adaptive molecular evolution in the opsin genes of rapidly speciating cichlid species. Mol Biol Evol 22:1412–1422

    Article  CAS  PubMed  Google Scholar 

  • Spady TC, Parry JWL, Robinson PR, Hunt DM, Bowmaker JK, Carleton KL (2006) Evolution of the cichlid visual palette through ontogenetic subfunctionalization of the opsin gene arrays. Mol Biol Evol 23:1538–1547

    Article  CAS  PubMed  Google Scholar 

  • Sugawara T, Terai Y, Imai H, Turner GG, Kolbmuller S, Sturmbauer C, Shichida Y, Okada N (2005) Parallelism of amino acid changes of the RH1 affecting spectral sensitivity among deep-water cichlids from Lakes Tanganyika and Malawi. PNAS 102:5448–5453

    Article  CAS  PubMed  Google Scholar 

  • Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Takahashi Y, Ebrey TG (2003) Molecular basis of spectral tuning in the newt short wavelength sensitive visual pigment. Biochemistry 42:6025–6034

    Article  CAS  PubMed  Google Scholar 

  • Terai Y, Mayer WE, Klein J, Tichy H, Okada N (2002) The effect of selection on a long wavelength sensitive (LWS) opsin gene of Lake Victoria cichlid fishes. PNAS 99:15501–15506

    Article  CAS  PubMed  Google Scholar 

  • Terai Y, Seehausen O, Sasaki T, Takahashi K, Mizoiri S, Sugawara T, Sato T, Watanabe M, Konjinendijk N, Mrosso HDJ, Tachida H, Imai H, Shichida Y, Okada N (2006) Divergent selection on opsins drives incipient speciation in Lake Victoria cichlids. PLOS Biol 4:2244–2251

    Article  CAS  Google Scholar 

  • Weatherhead PJ, Robertson RJ (1979) Offspring quality and the polygyny threshold: ‘The sexy son hypothesis’. Am Nat 113:201–208

    Article  Google Scholar 

  • Yokoyama S (2008) Evolution of dim-light and color vision pigments. Annu Rev Genomic Hum Genet 9:259–282

    Article  CAS  Google Scholar 

  • Yokoyama S, Radlwimmer FB (2001) The molecular genetics and evolution of red and green color vision in vertebrates. Genetics 158:1697–1710

    CAS  PubMed  Google Scholar 

  • Yokoyama S, Yokoyama R (1996) Adaptive evolution of photoreceptors and visual pigments in vertebrates. Annu Rev Ecol Syst 27:543–567

    Article  Google Scholar 

  • Yokoyama S, Tada T, Zhang H, Britt L (2008) Elucidation of phenotypic adaptations: molecular analyses of dim-light vision proteins in vertebrates. Proc Natl Acad Sci USA 105:13480–13485

    Article  CAS  PubMed  Google Scholar 

  • Zahavi A (1975) Mate selection—a selection for a handicap. J Theor Biol 53:205–214

    Article  CAS  PubMed  Google Scholar 

  • Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. PhD dissertation, The University of Texas at Austin

Download references

Acknowledgments

This work was supported by NSF grant IOS0841270 and the University of Maryland. Thanks to Tyrone Spady for providing samples of Labidochromis. Special thanks to Chris Hofmann and Kelly O’Quin for technical assistance and discussions of experimental design. Special thanks as well to Ad Konings for generously providing pictures of fishes. We thank all members of the Kocher Lab at UMD as well as two anonymous reviewers for helpful comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam R. Smith.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, A.R., Carleton, K.L. Allelic Variation in Malawi Cichlid Opsins: A Tale of Two Genera. J Mol Evol 70, 593–604 (2010). https://doi.org/10.1007/s00239-010-9355-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-010-9355-x

Keywords

Navigation