Skip to main content
Log in

Patterns of DNA-Sequence Divergence Between Drosophila miranda and D. pseudoobscura

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Contrary to the classical view, a large amount of non-coding DNA seems to be selectively constrained in Drosophila and other species. Here, using Drosophila miranda BAC sequences and the Drosophila pseudoobscura genome sequence, we aligned coding and non-coding sequences between D. pseudoobscura and D. miranda, and investigated their patterns of evolution. We found two patterns that have previously been observed in comparisons between Drosophila melanogaster and its relatives. First, there is a negative correlation between intron divergence and intron length, suggesting that longer non-coding sequences may contain more regulatory elements than shorter sequences. Our other main finding is a negative correlation between the rate of non-synonymous substitutions (d N) and codon usage bias (F op), showing that fast-evolving genes have a lower codon usage bias, consistent with strong positive selection interfering with weak selection for codon usage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amantides PG et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    Article  PubMed  Google Scholar 

  • Akashi H (1995) Inferring weak selection from patterns of polymorphism and divergence at “silent” sites in Drosophila DNA. Genetics 139:1067–1076

    CAS  PubMed  Google Scholar 

  • Andolfatto P (2005) Adaptive evolution of non-coding DNA in Drosophila. Nature 437:1149–1152

    Article  CAS  PubMed  Google Scholar 

  • Andolfatto P (2007) Hitchhiking effects of recurrent beneficial amino acid substitutions in the Drosophila melanogaster genome. Genome Res 17:1755–1762

    Article  CAS  PubMed  Google Scholar 

  • Arnone MI, Davidson EH (1997) The hardwiring of development: organization and function of genomic regulatory systems. Development 124:1851–1864

    CAS  PubMed  Google Scholar 

  • Babbitt GA, Kim Y (2008) Inferring natural selection on fine-scale chromatin organization in yeast. Mol Biol Evol 25(8):1714–1727

    Article  CAS  PubMed  Google Scholar 

  • Bachtrog D (2007) Reduced selection for codon usage bias in Drosophila miranda. J Mol Evol 64:586–590

    Article  CAS  PubMed  Google Scholar 

  • Bachtrog D (2008) Similar rates of protein adaptation in Drosophila miranda and D. melanogaster, two species with different current effective population sizes. BMC Evol Biol 8:334

    Article  PubMed  Google Scholar 

  • Bachtrog D, Andolfatto P (2006) Selection, recombination and demographic history in Drosophila miranda. Genetics 174:2045–2059

    Article  CAS  PubMed  Google Scholar 

  • Bachtrog D, Hom E, Wong KM, Maside X, de Jong P (2008) Genomic degradation of a young Y chromosome in Drosophila miranda. Genome Biol 9:R30

    Article  PubMed  Google Scholar 

  • Barrio E, Latorre A, Moya A, Ayala FJ (1992) Phylogenetic reconstruction of the Drosophila obscura group, on the basis of mitochondrial DNA. Mol Biol Evol 9:621–635

    CAS  PubMed  Google Scholar 

  • Bartolomé C, Charlesworth B (2006a) Rates and patterns of chromosomal evolution in Drosophila pseudoobscura and D. miranda. Genetics 173:779–791

    Article  PubMed  Google Scholar 

  • Bartolomé C, Charlesworth B (2006b) Evolution of amino-acid sequences and codon usage on the Drosophila miranda neo-sex chromosomes. Genetics 174:2033–2044

    Article  PubMed  Google Scholar 

  • Bartolomé C, Maside X, Yi S, Grant AL, Charlesworth B (2005) Patterns of selection on synonymous and nonsynonymous variants in Drosophila miranda. Genetics 169:1495–1507

    Article  PubMed  Google Scholar 

  • Bergman CM, Kreitman M (2001) Analysis of conserved noncoding DNA in Drosophila reveals similar constraints in intergenic and intronic sequences. Genome Res 11:1335–1345

    Article  CAS  PubMed  Google Scholar 

  • Bergman CM, Pfeiffer BD, Rincón-Limas DE, Hoskins RA, Gnirke A, Mungall CJ, Wang AM, Kronmiller B, Pacleb J, Park S, Stapleton M, Wan K, George RA, de Jong PJ, Botas J, Rubin GM, Celniker SE (2002) Assessing the impact of comparative genomic sequence data on the functional annotation of the Drosophila genome. Genome Biol 3(12):0086.1–0086.20

    Article  Google Scholar 

  • Betancourt AJ, Presgraves DC (2002) Linkage limits the power of natural selection in Drosophila. Proc Natl Acad Sci USA 99(21):13616–13620

    Article  CAS  PubMed  Google Scholar 

  • Bierne N, Eyre-Walker A (2003) The problem of counting sites in the estimation of the synonymous and nonsynonymous substitution rates: Implications for the correlation between the synonymous substitution rate and codon usage bias. Genetics 165:1587–1597

    PubMed  Google Scholar 

  • Bierne N, Eyre-Walker A (2006) Variation in synonymous codon use and DNA polymorphism within the Drosophila genome. J Evol Biol 19:1–11

    Article  CAS  PubMed  Google Scholar 

  • Birney E, Stamatoyannopoulos JA, Dutta A, Guigó R, Gingeras TR, Margulies EH et al (2007) Identification and analysis of functional elements in 1% of the human genome by the encode pilot project. Nature 447:799–816

    Article  CAS  PubMed  Google Scholar 

  • Bradnam KR, Korf I (2008) Longer first introns are a general property of eukaryotic gene structure. PLoS ONE 3(8):e3093

    Article  PubMed  Google Scholar 

  • Bray N, Pachter L (2004) MAVID: constrained ancestral alignment of multiple sequences. Genome Res 14:693–699

    Article  CAS  PubMed  Google Scholar 

  • Casillas S, Barbadilla A, Bergman CM (2007) Purifying selection maintains highly conserved noncoding sequences in Drosophila. Mol Biol Evol 24(10):2222–2234

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth B (1994) The effect of background selection against deleterious mutations on weakly selected, linked variants. Genet Res 63:213–227

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Stephan W (2003) Compensatory evolution of a precursor messenger RNA secondary structure in the Drosophila melanogaster Adh gene. Proc Natl Acad Sci USA 100(20):11499–11504

    Article  CAS  PubMed  Google Scholar 

  • Clark AG, Eisen MB, Smith DR, Bergman CM, Oliver B, Markow TA et al (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature 450:203–218

    Article  PubMed  Google Scholar 

  • Comeron JM (1995) A method for estimating the numbers of synonymous and nonsynonymous substitutions per site. J Mol Evol 41:1152–1159

    Article  CAS  PubMed  Google Scholar 

  • Comeron JM, Aguadé M (1996) Synonymous substitutions in the Xdh gene of Drosophila: Heterogeneous distribution along the coding region. Genetics 144:1053–1062

    CAS  PubMed  Google Scholar 

  • Comeron JM, Williford A, Kliman RM (2008) The Hill–Robertson effect: evolutionary consequences of weak selection and linkage in finite populations. Heredity 100:19–31

    Article  CAS  PubMed  Google Scholar 

  • Drummond DA, Wilke CO (2008) Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. Cell 134:341–352

    Article  CAS  PubMed  Google Scholar 

  • Duret L (2001) Why do genes have introns? Recombination might add a new piece to the puzzle. Trends Genet 17(4):172–175

    Article  CAS  PubMed  Google Scholar 

  • Duret L, Mouchiroud D (1999) Expression pattern and, surprisingly, gene length shape codon usage in Cænorhabditis, Drosophila, and Arabidopsis. Proc Natl Acad Sci USA 96(8):4482–4487

    Article  CAS  PubMed  Google Scholar 

  • Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30(1):207–210

    Article  CAS  PubMed  Google Scholar 

  • Emberly E, Rajewsky N, Siggia ED (2003) Conservation of regulatory elements between two species of Drosophila. BMC Bioinformatics 4:57

    Article  PubMed  Google Scholar 

  • FLYBASE: a database of the Drosophila genome. http://www.flybase.org

  • Haddrill PR, Thornton KR, Charlesworth B, Andolfatto P (2005) Patterns of intron sequence evolution in Drosophila are dependent upon length and GC content. Genome Biol 6:R67

    Article  PubMed  Google Scholar 

  • Haddrill PR, Bachtrog D, Andolfatto P (2008) Positive and negative selection on noncoding DNA in Drosophila simulans. Mol Biol Evol 25(9):1825–1834

    Article  CAS  PubMed  Google Scholar 

  • Halligan DL, Keightley PD (2006) Ubiquitous selective constraints in the Drosophila genome revealed by a genome-wide interspecies comparison. Genome Res 16:875–884

    Article  CAS  PubMed  Google Scholar 

  • Halligan DL, Eyre-Walker A, Andolfatto P, Keightley PD (2004) Patterns of evolutionary constraints in intronic and intergenic DNA of Drosophila. Genome Res 14:273–279

    Article  CAS  PubMed  Google Scholar 

  • Hardison RC (2000) Conserved noncoding sequences are reliable guides to regulatory elements. Trends Genet 16(9):369–372

    Article  CAS  PubMed  Google Scholar 

  • Hill WG, Robertson A (1966) The effect of linkage on limits to artificial selection. Genet Res 8:269–294

    Article  CAS  PubMed  Google Scholar 

  • Ikemura T (1981) Correlation between the abundance of E. coli transfer RNAs and the occurrence of the respective codon in the protein genes. J Mol Biol 146:1–21

    Article  CAS  PubMed  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132

    Google Scholar 

  • Kaplan N, Moore IK, Fondufe-Mittendorf Y, Gossett AJ, Tillo D, Field Y, LeProust EM, Hughes TR, Lieb JD, Widom J, Segal E (2009) The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458:362–366

    Article  CAS  PubMed  Google Scholar 

  • Keightley PD, Johnson T (2004) MCALIGN: stochastic alignment of noncoding DNA sequences based on an evolutionary model of sequence evolution. Genome Res 14:442–450

    Article  CAS  PubMed  Google Scholar 

  • Kirby DA, Muse SV, Stephan W (1995) Maintenance of pre-mRNA secondary structure by epistatic selection. Proc Natl Acad Sci USA 92(20):9047–9051

    Article  CAS  PubMed  Google Scholar 

  • Larracuente AM, Sackton TB, Greenberg AJ, Wong A, Singh ND, Sturgill D, Zhang Y, Oliver B, Clark AG (2008) Evolution of protein-coding genes in Drosophila. Trends Genet 24(3):114–123

    Article  CAS  PubMed  Google Scholar 

  • Leicht BG, Muse SV, Hanczyc M, Clark AG (1995) Constraints on intron evolution in the gene encoding the myosin alkali light chain in Drosophila. Genetics 139:299–308

    CAS  PubMed  Google Scholar 

  • Majewski J, Ott J (2002) Distribution and characterization of regulatory elements in the human genome. Genome Res 12:1827–1836

    Article  CAS  PubMed  Google Scholar 

  • Marais G, Mouchiroud D, Duret L (2001) Does recombination improve selection on codon usage? Lessons from nematode and fly complete genomes. PNAS 98(10):5688–5692

    Article  CAS  PubMed  Google Scholar 

  • Marais G, Mouchiroud D, Duret L (2003) Neutral effect of recombination on base composition in Drosophila. Genet Res 81:79–87

    Article  CAS  PubMed  Google Scholar 

  • Marais G, Domazet-Lošo T, Tautz D, Charlesworth B (2004) Correlated evolution of synonymous and nonsynonymous sites in Drosophila. J Mol Evol 59:771–779

    Article  CAS  PubMed  Google Scholar 

  • Marais G, Nouvellet P, Keightley PD, Charlesworth B (2005) Intron size and exon evolution in Drosophila. Genetics 170:481–485

    Article  CAS  PubMed  Google Scholar 

  • Maroni G (1994) The organization of Drosophila genes. DNA Seq 4(6):347–354

    Article  CAS  PubMed  Google Scholar 

  • Moriyama EN, Powell JR (1998) Gene length and codon usage bias in Drosophila melanogaster, Saccharomyces cerevisiae and Escherichia coli. Nucl Ac Res 23(13):3188–3193

    Article  Google Scholar 

  • Mount SM, Burks C, Hertz G, Stormo GD, White O, Fields C (1992) Splicing signals in Drosophila: intron size, information content, and consensus sequences. Nucl Ac Res 20(16):4255–4262

    Article  CAS  Google Scholar 

  • Parsch J (2003) Selective constraints on intron evolution in Drosophila. Genetics 165:1843–1851

    CAS  PubMed  Google Scholar 

  • Parsch J (2004) Functional analysis of Drosophila melanogaster gene regulatory sequences by transgene coplacement. Genetics 168:559–561

    Article  CAS  PubMed  Google Scholar 

  • Petrov DA (2002) DNA loss and evolution of genome size in Drosophila. Genetica 115:81–91

    Article  CAS  PubMed  Google Scholar 

  • Pollard DA, Bergman CM, Stoye J, Celniker SE, Eisen MB (2004) Benchmarking tools for the alignment of functional. BMC Bioinformatics 5:6

    Article  PubMed  Google Scholar 

  • Reenan RA (2005) Molecular determinants and guided evolution of species-specific RNA editing. Nature 434:409–413

    Article  CAS  PubMed  Google Scholar 

  • Richards S, Liu Y, Bettencourt BR, Hradecky P, Letovsky S, Nielsen R, Thornton K, Hubisz MJ, Chen R, Meisel RP, Couronne O, Hua S, Smith MA, Zhang P, Liu J, Bussemaker HJ, van Batenburg MF, Howells SL, Scherer SE, Sodergren E, Matthews BB, Crosby MA, Schroeder AJ, Ortiz-Barrientos D, Rives CM, Metzker ML, Muzny DM, Scott G, Steffen D, Wheeler DA, Worley KC, Havlak P, Durbin KJ, Egan A, Gill R, Hume J, Morgan MB, Miner G, Hamilton C, Huang Y, Waldron L, Verduzco D, Clerc-Blankenburg KP, Dubchak I, Noor MA, Anderson W, White KP, Clark AG, Schaeffer SW, Gelbart W, Weinstock GM, Gibbs RA (2005) Comparative genome sequencing of Drosophila pseudoobscura: chromosomal, gene, and cis-element evolution. Genome Res 15:1–18

    Article  CAS  PubMed  Google Scholar 

  • Rogic S, Montpetit B, Hoos HH, Mackworth AK, Ouellette BFF, Hieter P (2008) Correlation between the secondary structure of pre-mRNA introns and the efficiency of splicing in Saccharomyces cerevisiae. BMC Genomics 9:355

    Article  PubMed  Google Scholar 

  • Shields DC, Sharp PM, Higgins DG, Wright F (1988) “Silent” sites in Drosophila genes are not neutral: evidence of selection among synonymous codons. Mol Biol Evol 5(6):704–716

    CAS  PubMed  Google Scholar 

  • Singh ND, Davis JC, Petrov DA (2005) X-linked genes evolve higher codon bias in Drosophila and Caenorhabditis. Genetics 171:145–155

    Article  CAS  PubMed  Google Scholar 

  • Sironi M, Menozzi G, Comi GP, Cagliani R, Bresolin N, Pozzoli U (2005) Analysis of intronic conserved elements indicates that functional complexity might represent a major source of negative selection on non-coding sequences. Hum Mol Genet 14(17):2533–2546

    Article  CAS  PubMed  Google Scholar 

  • Subramanian S, Kumar S (2004) Gene expression intensity shapes evolutionary rates of the proteins encoded by the vertebrate genome. Genetics 168:373–381

    Article  CAS  PubMed  Google Scholar 

  • Thornton K (2003) Libsequence: a C++ class library for evolutionary genetic analysis. Bioinformatics 19(17):2325–2327

    Article  CAS  PubMed  Google Scholar 

  • Vicario S, Moriyama EN, Powell JR (2007) Codon usage in twelve species of Drosophila. BMC Evol Biol 7:226

    Article  PubMed  Google Scholar 

  • Vicoso B, Haddrill PR, Charlesworth B (2008) A multispecies approach for comparing sequence evolution of X-linked and autosomal sites in Drosophila. Genet Res 90:421–431

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Keightley PD, Johnson T (2006) MCALIGN2: Faster, accurate global pairwise alignment of non-coding DNA sequences based on explicit models of indel evolution. BMC Bioinformatics 7:292

    Article  PubMed  Google Scholar 

  • Warnecke T, Batada NN, Hurst LD (2008) The impact of the nucleosome code on protein-coding sequence evolution in yeast. PLoS Genetics 4(11):e1000250

    Article  PubMed  Google Scholar 

  • Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13(5):555–556

    CAS  PubMed  Google Scholar 

  • Yi S, Charlesworth B (2000) Contrasting patterns of molecular evolution of the genes on the new and old sex chromosomes of Drosophila miranda. Mol Biol Evol 17(5):703–717

    CAS  PubMed  Google Scholar 

  • Zhang Y, Sturgill D, Parisi M, Kumar S, Oliver B (2007) Constraint and turnover in sex-biased gene expression in the genus Drosophila. Nature 450(7167):233–238

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was conducted as part of the GENACT Project, funded by the Marie Curie Host Fellowships for Early Stage training to SMP, as part of the 6th Framework Programme of the European Commission. Brian Charlesworth was supported by the Royal Society. BAC sequencing and Daniel L. Halligan were funded by a Wellcome Trust and BBSRC grant to Peter D. Keightley and Brian Charlesworth. We thank Dr. Mark Dorris for isolating BACs and Dr. Jane Rogers at the Wellcome Trust Sanger Institute for organizing their sequencing. We also thank two anonymous reviewers for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Marion de Procé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marion de Procé, S., Halligan, D.L., Keightley, P.D. et al. Patterns of DNA-Sequence Divergence Between Drosophila miranda and D. pseudoobscura . J Mol Evol 69, 601–611 (2009). https://doi.org/10.1007/s00239-009-9298-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-009-9298-2

Keywords

Navigation