Skip to main content
Log in

The Origin of Life: Chemical Evolution of a Metabolic System in a Mineral Honeycomb?

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

For the RNA-world hypothesis to be ecologically feasible, selection mechanisms acting on replicator communities need to be invoked and the corresponding scenarios of molecular evolution specified. Complementing our previous models of chemical evolution on mineral surfaces, in which selection was the consequence of the limited mobility of macromolecules attached to the surface, here we offer an alternative realization of prebiotic group-level selection: the physical encapsulation of local replicator communities into the pores of the mineral substrate. Based on cellular automaton simulations we argue that the effect of group selection in a mineral honeycomb could have been efficient enough to keep prebiotic ribozymes of different specificities and replication rates coexistent, and their metabolic cooperation protected from extensive molecular parasitism. We suggest that mutants of the mild parasites persistent in the metabolic system can acquire useful functions such as replicase activity or the production of membrane components, thus opening the way for the evolution of the first autonomous protocells on Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Baaske P, Weinert FM, Duhr S, Lemke KH, Russell MJ, Braun D (2007) Extreme accumulation of nucleotides in simulated hydrothermal pore systems. Proc Natl Acad Sci 104:9346–9351

    Article  CAS  PubMed  Google Scholar 

  • Bernal JD (1951) The physical basis of life. Routledge and Paul, London

    Google Scholar 

  • Biondi E, Branciamore S, Fusi L, Gago S, Gallori E (2007a) Catalytic activity of hammerhead ribozymes in a clay mineral environment: implications for the RNA world. Gene 389:10–18

    Article  CAS  PubMed  Google Scholar 

  • Biondi E, Branciamore S, Maurel MC, Gallori E (2007b) Montmorillonite protection of an UV-irradiated hairpin ribozyme: evolution of the RNA world in a mineral environment. BMC Evol Biol 7(Suppl 2):S2

    Article  PubMed  Google Scholar 

  • Costanzo G, Saladino R, Crestini C, Ciciriello F, Di Mauro E (2007) Formamide as the main building block in the origin of nucleic acids. BMC Evol Biol 7. doi:10.1186/1471-2148-7-S2-S1

  • Czárán T, Szathmáry E (2000) Coexistence of replicators in prebiotic evolution. In: Dieckmann U, Law R, Metz JAJ (eds) The geometry of ecological interactions: simplifying spatial complexity. Cambridge University Press,  Cambridge, pp 116–134

    Google Scholar 

  • Eigen M, Schuster P (1977) A principle of natural self-organization. Naturwissenschaften 64:541–565

    Article  CAS  PubMed  Google Scholar 

  • Eigen M, Schuster P (1979) The abstract hypercycle. Naturwissenschaften 66:512–512

    Article  Google Scholar 

  • Ertem G, Ferris JP (1996) Synthesis of RNA oligomers on heterogeneous templates. Nature 379:238–240

    Article  CAS  PubMed  Google Scholar 

  • Ferris JP, Hill AR, Liu RH, Orgel LE (1996) Synthesis of long prebiotic oligomers on mineral surfaces. Nature 381:59–61

    Article  CAS  PubMed  Google Scholar 

  • Fontanari JF, Santos M, Szathmáry E (2006) Coexistence and error propagation in pre-biotic vesicle models: a group selection approach. J Theor Biol 239:247–256

    Article  PubMed  Google Scholar 

  • Gallori E, Biondi E, Branciamore S (2006) Looking for the primordial genetic honeycomb. Origins Life Evol Biosph 36:493–499

    Article  Google Scholar 

  • Gánti T (2003) Chemoton theory: theory of living systems. Oxford University Press, Oxford

    Google Scholar 

  • Gilbert W (1986) Origin of life: the RNA world. Nature 319:618–618

    Article  Google Scholar 

  • Greenberg JM, Hastings SP (1978) Spatial patterns for discrete models of diffusion in excitable media. SIAM J Appl Math 34:515–523

    Article  Google Scholar 

  • Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35:849–857

    Article  CAS  PubMed  Google Scholar 

  • Joyce GF (2002) The antiquity of RNA-based evolution. Nature 418:214–221

    Article  CAS  PubMed  Google Scholar 

  • Könnyü B, Czárán T, Szathmáry E (2008) Prebiotic replicase evolution in a surface-bound metabolic system: parasites as a source of adaptive evolution. BMC Evol Biol 8. doi:10.1186/1471-2148-8-267

  • Koonin EV (2007) An RNA-making reactor for the origin of life. Proc Natl Acad Sci 104:9105–9106

    Article  CAS  PubMed  Google Scholar 

  • Koonin EV, Martin W (2005) On the origin of genomes and cells within inorganic compartments. Trends Genet 21:647–654

    Article  CAS  PubMed  Google Scholar 

  • Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of tetrahymena. Cell 31:147–157

    Article  CAS  PubMed  Google Scholar 

  • Lincoln TA, Joyce GF (2009) Self-sustained replication of an RNA enzyme. Science 323:1229–1232

    Article  CAS  PubMed  Google Scholar 

  • Martin W, Russell MJ (2003) On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos Trans Roy Soc Lond Ser B Biol Sci 358:59–83

    Article  CAS  Google Scholar 

  • Martin W, Russell MJ (2007) On the origin of biochemistry at an alkaline hydrothermal vent. Philos Trans Roy Soc B Biol Sci 362:1887–1925

    Article  CAS  Google Scholar 

  • Maynard Smith J (1979) Hypercycles and the origin of life. Nature 280:445–446

    Article  Google Scholar 

  • Maynard Smith J, Szathmáry E (1995) The major transitions in evolution. Freeman, Oxford

    Google Scholar 

  • Moore PB, Steitz TA (2002) The involvement of RNA in ribosome function. Nature 418:229–235

    Article  CAS  PubMed  Google Scholar 

  • Orgel LE (2004) Prebiotic chemistry and the origin of the RNA world. Crit Rev Biochem Mol Biol 39:99–123

    Article  CAS  PubMed  Google Scholar 

  • Parsons I, Lee MR, Smith JV (1998) Biochemical evolution II: origin of life in tubular microstructures on weathered feldspar surfaces. Proc Natl Acad Sci USA 95:15173–15176

    Article  CAS  PubMed  Google Scholar 

  • Ricardo A, Carrigan MA, Olcott AN, Benner SA (2004) Borate minerals stabilize ribose. Science 303:196–196

    Article  CAS  PubMed  Google Scholar 

  • Saladino R, Crestini C, Ciambecchini U, Ciciriello F, Costanzo G, Di Mauro E (2004) Synthesis and degradation of nucleobases and nucleic acids by formamide in the presence of montmorillonites. Chembiochem 5:1558–1566

    Article  CAS  PubMed  Google Scholar 

  • Scheuring I, Czárán T, Szabo P, Karolyi G, Toroczkai Z (2003) Spatial models of prebiotic evolution: soup before pizza? Origins Life Evol Biosph 33:319–355

    Article  CAS  Google Scholar 

  • Smith JV (1998) Biochemical evolution. I. Polymerization on internal, organophilic silica surfaces of dealuminated zeolites and feldspars. Proc Natl Acad Sci USA 95:3370–3375

    Article  CAS  PubMed  Google Scholar 

  • Smith JV, Arnold FP, Parsons I, Lee MR (1999) Biochemical evolution III: polymerization on organophilic silica-rich surfaces, crystal-chemical modeling, formation of first cells, and geological clues. Proc Natl Acad Sci USA 96:3479–3485

    Article  CAS  PubMed  Google Scholar 

  • Steitz TA, Moore PB (2003) RNA, the first macromolecular catalyst: the ribosome is a ribozyme. Trends Biochem Sci 28:411–418

    Article  CAS  PubMed  Google Scholar 

  • Szathmáry E (2006) The origin of replicators and reproducers. Philos Trans Roy Soc B Biol Sci 361:1761–1776

    Article  Google Scholar 

  • Szathmáry E (2007) Coevolution of metabolic networks and membranes: the scenario of progressive sequestration. Philos Trans Roy Soc B Biol Sci 362:1781–1787

    Article  Google Scholar 

  • Szathmáry E, Demeter L (1987) Group selection of early replicators and the origin of life. J Theor Biol 128:463–486

    Article  PubMed  Google Scholar 

  • Wächtershäuser G (1992) Groundworks for an evolutionary biochemistry: the iron–sulphur world. Prog Biophys Mol Biol 58:85–201

    Article  PubMed  Google Scholar 

  • Zintzaras E, Santos M, Szathmary E (2002) “Living” under the challenge of information decay: the stochastic corrector model vs. hypercycles. J Theor Biol 217(2):167–181

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank W. de Back for useful discussion. Part of this work was supported by the Italian Space Agency, ASI-ESS Project. Financial support by the Hungarian Scientific Research Fund (OTKA Grant No. K-67907) for T.C. is acknowledged. E.S. is supported by the National Office for Research and Technology (NAP 2005/KCKHA005). Support by COST CM0703 (Systems chemistry) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Branciamore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Branciamore, S., Gallori, E., Szathmáry, E. et al. The Origin of Life: Chemical Evolution of a Metabolic System in a Mineral Honeycomb?. J Mol Evol 69, 458–469 (2009). https://doi.org/10.1007/s00239-009-9278-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-009-9278-6

Keywords

Navigation