Skip to main content
Log in

Bayesian Estimates of the Evolutionary Rate and Age of Hepatitis B Virus

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Accurately estimating the evolutionary rate and age of hepatitis B virus (HBV) has proven to be one of the most difficult problems in studies of viral evolution. To help resolve these issues we employed a recently developed Bayesian coalescent approach to globally sampled human and avian hepadnavirus genome sequences, accounting for lineage-specific rate variation, the presence of overlapping reading frames, and the potential impact of recombination. Our analysis revealed an unexpectedly high rate of evolutionary change—up to 10−4 nucleotide substitutions (subs) per site per year and always more than ~10−6 subs/site/year. These rates suggested a time to the most recent common ancestor (tMRCA) of the sampled isolates of consistently less than ~1500 years ago for human HBV and less than 6000 years ago for the avian hepadnaviruses. Notably, the evolutionary rate of nonoverlapping regions of the viral genome was ~2-fold greater than that of overlapping genome regions, reflecting the complex patterns of selective constraint inherent in the former. We also reveal that most recombination events in both human and avian HBV tend to fall in a specific region of the viral genome, which contains all four viral open reading frames and which may therefore represent a “hot spot” for recombination. However, while recombination affects estimates of both evolutionary rate and tMRCA, in no case was this sufficient to challenge the hypothesis that the dominant mode of HBV evolution is by recent cross-species transmission. We conclude that HBV exhibits rapid evolutionary dynamics, typical of other viruses dependent on reverse transcriptase-mediated replication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bollyky PL, Holmes EC (1999) Reconstructing the complex evolutionary history of hepatitis B virus. J Mol Evol 49:130–141

    Article  PubMed  CAS  Google Scholar 

  • Bollyky PL, Rambaut A, Harvey PH, Holmes EC (1996) Recombination between sequences of hepatitis B Virus from different genotypes. J Mol Evol 42:97–192

    Article  PubMed  CAS  Google Scholar 

  • Bowyer SM, Sim JGM (2000) Relationships within and between genotypes of hepatitis B virus at points across the genome: footprints of recombination in certain isolates. J Gen Virol 81:379–392

    PubMed  CAS  Google Scholar 

  • Cui C, Shi J, Hui L, Xi H, Zhuoma, Quni, Tsedan, Hu G (2002) The dominant hepatitis B virus genotype identified in Tibet is a C/D hybrid. J Gen Virol 83:2773–2777

    PubMed  CAS  Google Scholar 

  • Drake JW, Charlesworth B, Charlesworth D, Crow JF (1998) Rates of spontaneous mutation. Genetics 148:1667–1686

    PubMed  CAS  Google Scholar 

  • Drummond AJ, Rambaut A (2003) BEAST v1.0. Available at: http://www.evolve.zoo.ox.ac.uk/beast/

  • Drummond AJ, Nicholls GK, Rodrigo AG, Solomon W (2002) Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data. Genetics 161:1307–1320

    PubMed  CAS  Google Scholar 

  • Drummond AJ, Rambaut A, Shapiro B, Pybus OG (2005) Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol 22:1185–1192

    Article  PubMed  CAS  Google Scholar 

  • Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 88:699–710

    Google Scholar 

  • Fares MA, Holmes EC (2002) A revised evolutionary history of hepatitis B virus (HBV). J Mol Evol 54:807–814

    Article  PubMed  CAS  Google Scholar 

  • Hanada K, Suzuki Y, Gojobori T (2004) A large variation in the rates of synonymous substitution for RNA viruses and its relationship to a diversity of viral infection and transmission modes. Mol Biol Evol 21:1074–1080

    Article  PubMed  CAS  Google Scholar 

  • Hannoun C, Horal P, Lindh M (2000) Long-term mutation rates in the hepatitis B virus genome. J Gen Virol 81:75–83

    PubMed  CAS  Google Scholar 

  • Jenkins GM, Rambaut A, Pybus OG, Holmes EC (2002) Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis. J Mol Evol 54:156–165

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Kurbanov F, Tanaka Y, Fujiwara K, Sugauchi F, Mbanya D, Zekeng L, Ndembi N, Ngansop C, Kaptue L, Miura T, Ido E, Hayami M, Ichimura H, Mizokami M (2005) A new subtype (subgenotype) Ac (A3) of hepatitis B virus and recombination between genotypes A and E in Cameroon. J Gen Virol 86:2047–2056

    Article  PubMed  CAS  Google Scholar 

  • Luo K, Liu Z, He H, Peng J, Liang W, Dai W, Hou J (2004) The putative recombination of hepatitis B virus genotype B with pre-C/C region of genotype C. Virus Genes 29:31–41

    Article  PubMed  CAS  Google Scholar 

  • Martin DP, Williamson C, Posada D (2005a) RDP2: recombination detection and analysis from sequence alignments. Bioinformatics 21:260–262

    Article  PubMed  CAS  Google Scholar 

  • Martin DP, van der Walt E, Posada D, Rybicki EP (2005b) The evolutionary value of recombination is constrained by genome modularity. PloS Genet 51:475–479

    Google Scholar 

  • Mizokami M, Orito E, Ohba K, Ikeo K, Lau JYN, Gojobori T (1997) Constrained evolution with respect to gene overlap of hepatitis B virus. J Mol Evol 44:83–90

    Article  Google Scholar 

  • Okamoto H, Imai M, Kametani M, Nakamura T, Mayumi M (1987) Genomic heterogeneity of hepatitis B virus in a 54-year-old woman who contracted the infection through materno-fetal transmission. Japan J Exp Med 57:231–236

    CAS  Google Scholar 

  • Olinger CM, Venard V, Njayou M, Oyefolu AO, Maiga I, Kemp AJ, Omilabu SA, le Faou A, Muller CP (2006) Phylogenetic analysis of the precore/core gene of hepatitis B virus genotypes E and A in West Africa: new subtypes, mixed infections and recombinations. J Gen Virol 87:1163–1173

    Article  PubMed  CAS  Google Scholar 

  • Orito E, Mizokami M, Ina Y, Moriyama EN, Kameshima N, Yamamoto M, Gojobori T (1989) Host-independent evolution and a genetic classification of the hepadnavirus family based on nucleotide sequences. Proc Natl Acad Sci USA 86:7059–7062

    Article  PubMed  CAS  Google Scholar 

  • Osiowy C, Giles E, Tanaka Y, Mizokami Y, Minuk GY (2006) Molecular evolution of hepatitis B virus over 25 years. J Virol 80:10307–10314

    Article  PubMed  CAS  Google Scholar 

  • Simmonds P (2001) Reconstructing the origins of human hepatitis viruses. Phil Trans R Soc Lond B 356:1013–1026

    Article  CAS  Google Scholar 

  • Simmonds P, Midgley S (2005) Recombination in the genesis and evolution of hepatitis B virus genotypes. J Virol 79:15467–15476

    Article  PubMed  CAS  Google Scholar 

  • Suwannakarn K, Tangkijvanich P, Theamboonlers A, Abe K, Poovorawan Y (2005) A novel recombinant of Hepatitis B virus genotypes G and C isolated from a Thai patient with hepatocellular carcinoma. J Gen Virol 86:3027–3330

    Article  PubMed  CAS  Google Scholar 

  • Swofford D (2003) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4 ed. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Starkman S, MacDonald DM, Lewis JCM, Holmes EC, Simmonds P (2003) Geographic and species association of hepatitis B virus genotypes in non-human primates. Virology 314:381–393

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Liu Z, Zeng G, Wen S, Qi Y, Ma S, Naoumov NV, Hou J (2005) A new intertype recombinant between genotypes C and D of hepatitis B virus identified in China. J Gen Virol 86:985–990

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization (2000) Hepatitis B: World Health Organization fact sheet 204. Available at: http://www.who.int/mediacentre/factsheets/fs204/en/

  • Yang J, Xing K, Deng R, Wang J, Wang X (2006) Identification of Hepatitis B virus putative intergenotype recombinants by using fragment typing. J Gen Virol 87:2203–2215

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. K. Abe, Dr. R. Chakravarty, Dr. Y. Tanaka, Dr. H. Okamoto, Dr. F. Pujol, Dr, Y. Muraki, Dr. K. Fujiwara, Dr. Y. Wen, Dr. P. Karayiannis, Dr. J. Newbold, Dr. W. Hans, Dr. J. Giambrone, and Dr. M. Kew for kindly providing additional information concerning the sequences they generated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward C. Holmes.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y., Holmes, E.C. Bayesian Estimates of the Evolutionary Rate and Age of Hepatitis B Virus. J Mol Evol 65, 197–205 (2007). https://doi.org/10.1007/s00239-007-0054-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-007-0054-1

Keywords

Navigation