Skip to main content

Advertisement

Log in

Evolutionary Analysis of Phycobiliproteins: Implications for Their Structural and Functional Relationships

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Phycobiliproteins, together with linker polypeptides and various chromophores, are basic building blocks of phycobilisomes, a supramolecular complex with a light-harvesting function in cyanobacteria and red algae. Previous studies suggest that the different types of phycobiliproteins and the linker polypeptides originated from the same ancestor. Here we retrieve the phycobilisome-related genes from the well-annotated and even unfinished cyanobacteria genomes and find that many sites with elevated d N /d S ratios in different phycobiliprotein lineages are located in the chromophore-binding domain and the helical hairpin domains (X and Y). Covariation analyses also reveal that these sites are significantly correlated, showing strong evidence of the functional-structural importance of interactions among these residues. The potential selective pressure driving the diversification of phycobiliproteins may be related to the phycobiliprotein-chromophore microenvironment formation and the subunits interaction. Sites and genes identified here would provide targets for further research on the structural-functional role of these residues and energy transfer through the chromophores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adir N, Lerner N (2003) The crystal structure of a novel unmethylated form of C-phycocyanin, a possible connector between cores and rods in phycobilisomes. J Biol Chem 278:25926–25932

    Article  PubMed  CAS  Google Scholar 

  • Afonnikov DA, Kolchanov NA (2004) CRASP: a program for analysis of coordinated substitutions in multiple alignments of protein sequences. Nucleic Acids Res 32: W64–W68

    PubMed  CAS  Google Scholar 

  • Apt KE, Collier JL, Grossman AR (1995) Evolution of the phycobiliproteins. J Mol Biol 248:79–96

    Article  PubMed  CAS  Google Scholar 

  • Atchley WR, Wollenberg KR, Fitch WM, Terhalle W, Dress AW (2000) Correlations among amino acid sites in bHLH protein domains: an information theoretic analysis. Mol Biol Evol 17:164–178

    PubMed  CAS  Google Scholar 

  • Bickel PJ, Kechris KJ, Spector PC, Wedemayer GJ, Glazer AN (2002) Finding important sites in protein sequences. Proc Natl Acad Sci USA 99:14764–14771

    Article  PubMed  CAS  Google Scholar 

  • Borisov AY (1989) Transfer of excitation energy in photosynthesis: some thoughts. Photosynth Res 20:35–38

    Article  CAS  Google Scholar 

  • Brejc K, Ficner R, Huber R, Steinbacher S (1995) Isolation, crystallization, crystal structure analysis and refinement of allophycocyanin from the cyanobacterium Spirulina platensis at 2.3 Å resolution. J Mol Biol 249:424–440

    Article  PubMed  CAS  Google Scholar 

  • Bryant DA (1982) Phycoerythrocyanin and phycoerythrin: properties and occurrence in cyanobacteria. J Gen Microbiol 128:835–844

    CAS  Google Scholar 

  • Bryant DA (1991) Cyanobacterial phycobilisomes: Progress toward complete structure and function in the cyanobacterium Synechococcus sp. PCC 7002. In: Bogorad L, Vasil K (eds) The photosynthetic apparatus: molecular biology and operation. Academic Press, Boston, pp 257–300

    Google Scholar 

  • Creevey CJ, McInerney JO (2002) An algorithm for detecting directional and non-directional positive selection, neutrality and negative selection in protein coding DNA sequences. Gene 300:43–51

    Article  PubMed  CAS  Google Scholar 

  • Doust AB, Marai CN, Harrop SJ, Wilk KE, Curmi PM, Scholes GD (2004) Developing a structure-function model for the cryptophyte phycoerythrin 545 using ultrahigh resolution crystallography and ultrafast laser spectroscopy. J Mol Biol 344:135–153

    Article  PubMed  CAS  Google Scholar 

  • Ducret A, Sidler W, Frank G, Zuber H (1994) Complete amino acid sequence of R-phycocyanin I alpha- and beta-subunits from the red alga Porphyridium cruentum. Eur J Biochem 221:563–580

    Article  PubMed  CAS  Google Scholar 

  • Duerring M, Huber R, Bode W, Ruembeli R, Zuber H (1990) Refined three-dimensional structure of phycoerythrocyanin from the cyanobacterium Mastigocladus laminosus at 2.7 Å. J Mol Biol 211:633–644

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J, (1989) Phylogeny inference package (version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Ficner R, Lobeck K, Schmidt G, Huber R (1992) Isolation, crystallization, crystal structure analysis and refinement of B-phycoerythrin from the red alga Porphyridium sordidum at 2.2 Å resolution. J Mol Biol 228:935–950

    Article  PubMed  CAS  Google Scholar 

  • Glauser M, Stirewalt VI, Bryant DA, Sidler W, Zuber H (1992) Structures of the genes encoding the rod-core linker polypeptides of Mastigocladus laminosus phycobilisomes and functional aspects of the phycobiliprotein/linker-polypeptide interactions. Eur J Biochem 205:927–973

    Article  PubMed  CAS  Google Scholar 

  • Glazer AN (1980) Structure and evolution of photosynthetic accessory pigment systems with special reference to phycobiliproteins. In: Sigman DS, Brazier MAB (eds) The evolution of protein structure and function. Academic Press, New York, pp 221–244

    Google Scholar 

  • Glazer AN (1988) Phycobilisomes. Methods Enzymol 167:304–312

    Article  CAS  Google Scholar 

  • Henikoff S, Henikoff JG (1994) Position-based sequence weights. J Mol Biol 243:574–578

    Article  PubMed  CAS  Google Scholar 

  • Huber R, (1989) A structural basis of light energy electron transfer in biology. EMBO J 8:2125–2147

    PubMed  CAS  Google Scholar 

  • Kikuchi H, Wako H, Yura K, Go M, Mimuro M (2000) Significance of a two-domain structure in subunits of phycobiliproteins revealed by the normal mode analysis. Biophys J 79:1587–1600

    PubMed  CAS  Google Scholar 

  • MacColl R (1998) Cyanobacterial phycobilisomes. J Struct Biol 124:311–334

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Oyanedel J, Contreras-Martel C, Bruna C, Bunster M (2004) Structural-functional analysis of the oligomeric protein R-phycoerythrin. Biol Res 37(4; Suppl A):733–745

    PubMed  CAS  Google Scholar 

  • McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–654

    Article  PubMed  CAS  Google Scholar 

  • Neilson R, Yang ZH (1998) Likelihood models for detecting positively selected amino acid sites and applications to HIV-1 envelope gene. Genet 148:929–936

    Google Scholar 

  • Nield J, Rizkallah PJ, Barber J, Chayen NE (2003) The 1.45 Å three-dimensional structure of C-phycocyanin from the thermophilic cyanobacterium Synechococcus elongates. J Struct Biol 141:149–155

    Article  PubMed  CAS  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer-Verlag, New York

    Google Scholar 

  • Padyana AK, Bhat VB, Madyastha KM, Rajashankar KR, Ramakumar S (2001) Crystal structure of a light-harvesting protein C-phycocyanin from Spirulina platensis. Biochem Biophys Res Commun 282:893–898

    Article  PubMed  CAS  Google Scholar 

  • Pollock DD, Taylor WR (1997) Effectiveness of correlation analysis in identifying protein residues undergoing correlated evolution. Protein Eng 10:647–657

    Article  PubMed  CAS  Google Scholar 

  • Qin S, Zhao FQ, Tseng CK (2005) Evidence for positive selection in phycoerythrin genes of red algae and cyanobacteria Prochlorococcus and Synechococcus. Photosynthesis 43:141–146

    Article  CAS  Google Scholar 

  • Rambaut A, Grassly NC (1997) Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. Comput Appl Biosci 13:235–238

    PubMed  CAS  Google Scholar 

  • Reuter W, Wiegand G, Huber R, Than ME (1999) Structural analysis at 2.2 Å of orthorhombic crystals presents the asymmetry of the allophycocyanin-linker complex, AP.LC7.8, from phycobilisomes of Mastigocladus laminosus. Proc Natl Acad Sci USA 96:1363–1368

    Article  PubMed  CAS  Google Scholar 

  • Roff DA, Bentzen P (1989) The statistical analysis of mitochondrial DNA polymorphisms: Chi-square and the problem of small samples. Mol Biol Evol 6:539–545

    PubMed  CAS  Google Scholar 

  • Schirmer TD, Bode W, Huber R, Sidler W, Zuber H (1985) X-ray crystallographic structure of the light-harvesting biliprotein C-phycocyanin from thermophilic cyanobacterium Mastigocladus laminosus and its resemblance to globin structures. J Mol Biol 184:257–277

    Article  PubMed  CAS  Google Scholar 

  • Sidler WA (1994) Phycobilisome and phycobiliprotein structures. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic, pp 139–216

  • Stec B, Troxler RF, Teeter MM (1999) Crystal structure of C-phycocyanin from Cyanidium caldarium provides a new perspective on phycobilisome assembly. Biophys J 76:2912–2921

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Nei M (2004) False-positive selection identified by ML-based methods: examples from the Sig I gene of the diatom Thalassiosira weissflogii and the tax gene of a human T-cell lymphotropic virus. Mol Biol Evol 21:914–921

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  CAS  Google Scholar 

  • Tomii K, Kanehisa M (1996) Analysis of amino acid indices and mutation matrices for sequence comparison and structure prediction of proteins. Protein Eng 9:27–36

    PubMed  CAS  Google Scholar 

  • Vingron M, Argos P (1989) A fast and sensitive multiple sequence alignment algorithm. CABIOS 5:115–121

    PubMed  CAS  Google Scholar 

  • Wong WSW, Yang ZH, Goldman N, Nielsen R (2004) Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites. Genetics 168:1041–1051

    Article  PubMed  CAS  Google Scholar 

  • Yang ZH (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. CABIOS 13:555–556

    PubMed  CAS  Google Scholar 

  • Yang Z, Bielawski JP (2000) Statiscal methods for detecting molecular adaptation. Trends Ecol Evol 15:496–503

    Article  PubMed  Google Scholar 

  • Yang ZH, Nielsen R (2002) Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol 19:908–917

    PubMed  CAS  Google Scholar 

  • Yang Z, Nielsen R, Goldman N, Pedersen AM (2000) Codon substitution models for heterogeneous selection pressure at amino acid sites. Genetics 15:1600–1611

    Google Scholar 

  • Yang ZH, Wong WSW, Nielsen R (2005) Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118

    Article  PubMed  CAS  Google Scholar 

  • Zhang J (2004) Frequent false detection of positive selection by the likelihood method with branch-site models. Mol Biol Evol 21:1332–1339

    Article  PubMed  CAS  Google Scholar 

  • Zuber H (1986) Structure of light-harvesting antenna complexes of photosynthetic bacteria and red algae. Trends Biochem Sci 11:414–419

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from the Key Innovative Project (KZCX3-SW-215) of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Qin.

Additional information

[Reviewing Editor: Dr. Rasmus Nielsen]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, F., Qin, S. Evolutionary Analysis of Phycobiliproteins: Implications for Their Structural and Functional Relationships. J Mol Evol 63, 330–340 (2006). https://doi.org/10.1007/s00239-005-0026-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-005-0026-2

Keywords

Navigation