Skip to main content
Log in

The GC-Rich Transposon Bytmar1 from the Deep-Sea Hydrothermal Crab, Bythograea thermydron, May Encode Three Transposase Isoforms from a Single ORF

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Mariner-like elements (MLEs) are classII transposons with highly conserved sequence properties and are widespread in the genome of animal species living in continental environments. We describe here the first full-length MLE found in the genome of a marine crustacean species, the deep-sea hydrothermal crab Bythograea thermydron (Crustacea), named Bytmar1. A comparison of its sequence features with those of the MLEs contained in the genomes of continental species reveals several distinctive characteristics. First, Bytmar1 elements contains an ORF that may encode three transposase isoforms 349, 379, and 398 amino acids (aa) in long. The two biggest proteins are due to the presence of a 30- and 49-aa flag, respectively, at the N-terminal end of the 349-aa cardinal MLE transposase. Their GC contents are also significantly higher than those found in continental MLEs. This feature is mainly due to codon usage in the transposase ORF and directly interferes with the curvature propensities of the Bytmar1 nucleic acid sequence. Such an elevated GC content may interfere with the ability of Bytmar 1 to form an excision complex and, in consequence, with its efficiency to transpose. Finally, the origin of these characteristics and their possible consequences on transposition efficiency are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • IR Arkhipova M Meselson (2000) ArticleTitleTransposable elements in sexual and ancient asexual taxa Proc Natl Sci Acad USA 97 14473–14477

    Google Scholar 

  • RMP Avancini KKO Walden HM Robertson (1996) ArticleTitleThe genomes of most animals have multiple membres of the Tc1 family of transposable elements Genetica 98 131–140

    Google Scholar 

  • C Augé-Gouillou H Notareschi-Leroy P Abad G Periquet Y Bigot (2000) ArticleTitleEvolution of DNA-binding and catalytic domains in mariner-like transposases: Consequences on their phylogenetic analyses Mol Gen Genet 264 514–520

    Google Scholar 

  • C Augé-Gouillou MH Hamelin MV Demattei G Periquet Y Bigot (2001) ArticleTitleThe ITR binding domain of the Mariner Mos-1 transposase Mol Gen Genet 265 58–65

    Google Scholar 

  • FM Ausubel R Brent RE Kingston DD Morre JG Seidman JAK Smith (1994) Current protocols in molecular biology, Vols 1 and 2 John Wiley and Sons New York

    Google Scholar 

  • EG Barry DJ Witherspoon DJ Lampe (2004) ArticleTitleA bacterial genetic screen identifies functional coding sequences of the insect mariner transposable element Famar1 amplified from the genome of the earwig, Forficula auricularia Genetics 166 823–833

    Google Scholar 

  • Y Bigot MH Hamelin P Capy G Periquet (1994) ArticleTitleMariner-like elements in hymenopteran species: Insertion site and distribution Proc Natl Acad Sci USA 91 3408–3412

    Google Scholar 

  • N Casse E Pradier Y Bigot C Loiseau M Laulier (2000) ArticleTitleMariner, a mobile DNA transposon characterized in the genomes of several hydrothermal invertebrate species Interridge 9 15–17

    Google Scholar 

  • N Casse E Pradier MV Demattei Y Bigot M Laulier (2002) ArticleTitleMariner transposons are genetic parasites occurring in the genome of hydrothermal invertebrates Cah Biol Mar 43 325–328

    Google Scholar 

  • J Felsenstein (1993) PHILIPS (phylogeny inference package), version 3.5.c University of Washington Seattle

    Google Scholar 

  • R Garcia-Escudero E Vinuela (2000) ArticleTitleStructure of African swine fever virus late promotors: Requirement of a TATA sequence at the initiation region J Virol 74 8176–8182

    Google Scholar 

  • LM Gomulski C Torti AR Malacrida G Gasperi (1997) ArticleTitleCcmar1, a full length mariner element from the Mediterranean fruit fly, Ceratitis capitata Insect Mol Biol 6 241–253

    Google Scholar 

  • LM Gomulski C Torti M Bonizzoni D Moralli E Raimondi P Capy G Gasperi AR Malacrida (2001) ArticleTitleA new basal subfamily of mariner elements in. Ceratitis rosa and other tephritid flies J Mol Evol 53 597–606

    Google Scholar 

  • DS Goodsell RE Dickerson (1994) ArticleTitleBending and curvature calculations in B-DNA Nucleic Acids Res 22 5497–5503

    Google Scholar 

  • JW Jacobson DL Hartl (1985) ArticleTitleCoupled instability of two X-linked genes in Drosophila mauritiana: Germiline and somatic mutability Genetics 111 57–65

    Google Scholar 

  • A Jeyaprakash MA Hoy (1995) ArticleTitleComplete sequence of a mariner transposable element from the predatory mite Metasolius occidentalis isolated by an inverse PCR approach Insect Mol Biol 4 31–39

    Google Scholar 

  • S Karlin C Burge (1995) ArticleTitleDinucleotide relative abundance extremes: A signature Trends Genet 11 283–290 Occurrence Handle10.1016/S0168-9525(00)89076-9 Occurrence Handle1:CAS:528:DyaK2MXmvVahtLY%3D Occurrence Handle7482779

    Article  CAS  PubMed  Google Scholar 

  • MG Kidwell R Lisch (2001) ArticleTitlePerspective: Transposable elements, parasitic DNA, and genome evolution Evolution 55 1–24

    Google Scholar 

  • MJB Krieger KG Ross (2003) ArticleTitleMolecular evolutionary analyses of mariners and other transposable elements in fire ants (Hymenoptera: Formicidae) Insect Mol Biol 12 155–165

    Google Scholar 

  • DJ Lampe MEA Churchill HM Robertson (1996) ArticleTitleA purified mariner transposase is sufficient to mediate transposition in vitro EMBO J 15 5470–5479

    Google Scholar 

  • DJ Lampe DJ Witherspoon FN Soto-Adames HM Robertson (2003) ArticleTitleRecent horizontal transfer of mellifera subfamily mariner transposons onto insect lineages representing four different orders shows that selection acts during horizontal transefer Mol Biol Evol 20 554–562

    Google Scholar 

  • M Laulier E Pradier Y Bigot G Périquet (1995) ArticleTitleAn easy method for preserving nucleic acids in field samples for later molecular and genetic studies without refrigerating J Evol Biol 8 657–663

    Google Scholar 

  • Leroy H (2000) Caractérisation d’éléments transposables de la super-famille Tcl-mariner chez les nématodes phytoparasites du genre Meloidogyne spp. Diplôme de Docteur en Sciences, Université d’Aix-Marseille II

  • H Leroy F Leroy C Augé-Gouillou P Castagnone-Sereno F Venlerbergu-Masutti Y Bigot P Abad (2000) ArticleTitleIdentification of mariner-like elements from the root-knot nematode Meloidopyne spp Mol Biochem Parasitol 107 181–190

    Google Scholar 

  • H Leroy P Castagnone-Sereno S Renault C Augé-Gouillou Y Bigot P Abad (2003) ArticleTitleCharacterization of Mcmar1, a mariner-like element with large ITR from the phytoparasitic nematode Meloidogyne chiwoodi Gene 304 35–41

    Google Scholar 

  • M Mandrioli (2003) ArticleTitleIdentification and chromosomal localization of mariner-like elements in the cabbage moth Mamestra brassicae (Lepidoptera) Chrom Res 11 319–322

    Google Scholar 

  • M Medhora K Maruyama DL Hartl (1991) ArticleTitleMolecular and functional analysis of the mariner mutator element Mos1 in Drosophila Genetics 128 311–318

    Google Scholar 

  • S Pietrokovshi S Henikoff (1997) ArticleTitleA helix-turn-helix DNA binding motif predicted for transposases of DNA transposons Mol Gen Genet 254 689–695

    Google Scholar 

  • RHA Plasterk GAM Luenen ParticleVan (2002) The Tcl/mariner family of transposable elements NL Craig R Robert Craigie M Gellert A Lambowitz (Eds) Mobile DNA II ASM Press Washington, DC 519–531

    Google Scholar 

  • A Regev MJ Lamb E Jablonka (1998) ArticleTitleThe role of DNA methylation in invertebrates: Developmental or genome defense? Mol Boil Evol 15 880–891

    Google Scholar 

  • HM Robertson (1993) ArticleTitleThe mariner transposable element is widespread in insects Nature 362 241–245

    Google Scholar 

  • HM Robertson (1997) ArticleTitleMultiple mariner transposons in Flatworms and Hydras are related to those of Insects J Hered 88 195–201

    Google Scholar 

  • HM Robertson (2002) Evolution of DNA transposons in eukaryotes NL Craig R Robert Craigie M Gellert A Lambowitz (Eds) Mobile DNA II ASM Press Washington, DC 1093–1110

    Google Scholar 

  • HM Robertson ML Asplund (1996) ArticleTitleBmmar1: A basal lineage of the mariner family of transposable elements in the silkworm moth, Bombyx mori Insect Biochem Mol Biol 26 945–954

    Google Scholar 

  • HM Robertson DJ Lampe (1995) ArticleTitleRecent horizontal transfer of a marnier transposable element among and between Diptera and Neuroptera Mol Biol Evol 12 850–862

    Google Scholar 

  • HM Robertson R Martos (1997) ArticleTitleMolecular evolution of the second ancient human mariner transposon, Hsmar2, illustrates patterns of neutral evolution in the human genome lineage Gene 205 219–228

    Google Scholar 

  • HM Robertson KKO Walden (2003) ArticleTitleBmmar6, a second mori subfamily mariner transposon from the silkworm moth Bombyx mori Insect Mol Biol 12 167–171

    Google Scholar 

  • F Sanger S Nicklen AR Coulson (1977) ArticleTitleDNA sequencing with chain-terminating inhibitors Proc Natl Acad Sci USA 74 5463–5467 Occurrence Handle1:CAS:528:DyaE1cXhtlaru7Y%3D Occurrence Handle271968

    CAS  PubMed  Google Scholar 

  • InstitutionalAuthorNameSAS Institute (1995) JMP statistique software 3.1. SAS Institute Research Triangle Park NC

    Google Scholar 

  • H Shao Z Tu (2001) ArticleTitleExpanding the diversity of IS630-Tcl-mariner superfamily: Discovery of a unique DD37E transposon and reclassification of DD37D and DD39D transposons Genetics 159 1103–1115

    Google Scholar 

  • EM Southern (1975) ArticleTitleDetection of specific sequences among DNA fragments separated by gel electrophoresis J Mol Biol 98 503–517 Occurrence Handle1:CAS:528:DyaE28XktVeltQ%3D%3D Occurrence Handle1195397

    CAS  PubMed  Google Scholar 

  • M Sumitani JM Lee Hatakeyama K Oishi (2002) ArticleTitleCloning and characterization of Acmar1, a mariner-like element in the asiatic honey bee, Apis cerana japonica (Hymenoptera, Apocrita) Arch Insect Biochem Physiol 50 183–190

    Google Scholar 

  • LRO Tosi SM Beverley (2000) ArticleTitlecis and trans factors affecting Mos1 mariner evolution and transposition in vitro, and its potential for functional genomics Nucleic Acids Res 23 784–190

    Google Scholar 

  • DJ Witherspoon HM Robertson (2003) ArticleTitleNeutral evolution of ten types of mariner transposons in the genome of Caenorhabditis elegans and C. briggsae J Mol Evol 56 751–769

    Google Scholar 

  • M Yoshiyama Z Tu Y Kainoh H Honda T Shono K Kimura (2001) ArticleTitlePossible horizontal transfer of a transposable element from host to parasitoid Mol Biol Evol 18 1952–1958

    Google Scholar 

Download references

Acknowledgments

We thank the Senior Scientist F. Lallier and the captain and crew of the Hope 99 cruise for their support. We thank Dr. C. Augé-Gouillou and Prof. P Capy for their suggestions and helpful criticism during our work and J. Rossignol and S. Amiard for their technical assistance. The English text was revised by Monika Ghosh. The studies were funded by grants from l’Institut National des Sciences de l’Univers, le Ministère de l’Éducation de la Recherche et de la Technologie, le Centre National de la Recherche Scientifique, the University of Le Mans, and the University of Tours.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Bigot.

Additional information

Reviewing Editor: Dr. Nicolas Galtier

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halaimia-Toumi, N., Casse, N., Demattei, M. et al. The GC-Rich Transposon Bytmar1 from the Deep-Sea Hydrothermal Crab, Bythograea thermydron, May Encode Three Transposase Isoforms from a Single ORF. J Mol Evol 59, 747–760 (2004). https://doi.org/10.1007/s00239-004-2665-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-004-2665-0

Keywords

Navigation