Skip to main content
Log in

PAQR Proteins: A Novel Membrane Receptor Family Defined by an Ancient7-Transmembrane Pass Motif

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

An emerging series of papers has identified new receptor proteins that predict seven-transmembrane pass topologies. We have consolidated this family to 11 human genes and have named the family PAQR, after two of the initially described ligands (progestin and adipoQ receptors). This protein family has ancient evolutionary roots, with identified homologs found in eubacteria. To date, published data indicate that the prokaryotic members of this family appear to encode hemolysin-type proteins, while in eukaryotes, PAQR proteins encode functional receptors with a broad range of apparent ligand specificities. We provide the complete human and mouse complement of this family, suggest a conserved structure/topology with invariant intracellular amino acid residues, and have measured mRNA expression levels for these genes across a range of human tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    PubMed  Google Scholar 

  • Baida GE, Kuzmin NP (1995) Cloning and primary structure of a new hemolysin gene from Bacillus cereus. Biochim Biophys Acta 1264:151–154

    PubMed  Google Scholar 

  • Baida GE, Kuzmin NP (1996) Mechanism of action of hemolysin III from Bacillus cereus. Biochim Biophys Acta 1284:122–124

    PubMed  Google Scholar 

  • Durbin R (1998) Biological sequence analysis probabilistic models of proteins and nucleic acids. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194

    Google Scholar 

  • Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185

    PubMed  Google Scholar 

  • Florea L, Hartzell G, Zhang Z, Rubin GM, Miller W (1998) A computer program for aligning a cDNA sequence with a genomic DNA sequence. Genome Res 8:967–974

    PubMed  Google Scholar 

  • Ganfomina MD, Sanchez D (1999) Generation of evolutionary novelty by functional shift. Bioessays 21:432–439

    Article  PubMed  Google Scholar 

  • Gether U (2000) Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr Rev 21(1):90–113, 2000

    Article  PubMed  Google Scholar 

  • Huang X (1996) An improved sequence assembly program. Genomics 33:21–31

    Article  PubMed  Google Scholar 

  • Hughey R, Krogh A (1996) Hidden Markov models for sequence analysis: extension and analysis of the basic method. Comput Appl Biosci 12:95–107

    PubMed  Google Scholar 

  • Karpichev IV, Cornivelli L, Small GM (2002) Multiple regulatory roles of a novel Saccharomyces cerevisiae protein, encoded by YOL002C, in lipid and phosphate metabolism. J Biol Chem 277:19609–19617

    Article  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  Google Scholar 

  • Tillinghast J, Sinku A, Tang Y (2000) Clustering and assembly of a large number of EST and cDNA sequences using Hyseq’s proprietary software. In: M Satoru R Shamir T Takagi (eds). Currents in computational molecular biology. Universal Academy Press, Tokyo, 74–75

    Google Scholar 

  • Vassilatis DK, Hohmann JG, Zeng H, Li F, Ranchalis JE, Mortrud MT, Brown A, Rodriguez SS, Weller JR, Wright AC, Bergmann JE, Gaitanaris GA (2003) The G protein-coupled receptor repertoires of human and mouse. Proc Natl Acad Sci USA 100:4903–4908

    Article  PubMed  Google Scholar 

  • Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn BB, Kadowaki T (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8:1288–1295

    Article  PubMed  Google Scholar 

  • Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, Sugiyama T, Miyagishi M, Kara K, Tsunoda M, Murakami K, Ohteki T, Uchida S, Takekawa S, Waki H, Tsuno NH, Shibata Y, Terauchi Y, Froguel P, Tobe K, Koyasu S, Taira K, Kitamura T, Shimizu T, Nagai R, Kadowaki T (2003) Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423:762–769

    PubMed  Google Scholar 

  • Zhu Y, Rice CD, Pang Y, Pace M, Thomas P (2003) Cloning, expression, and characterization of a membrane progestin receptor and evidence it is an intermediary in meiotic maturation of fish oocytes. Proc Natl Acad Sci USA 100:2231–2236

    Article  PubMed  Google Scholar 

  • Zhu Y, Bond J, Thomas P (2003) Identification, classification, and partial characterization of genes in humans and other vertebrates homologous to a fish membrane progestin receptor. Proc Natl Acad Sci USA 100:2237–2242

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank S. Palencia for advocating the study of the adipoR family, S. Andarmani and Matthew Mueller for scientific discussions and bioinformatics assistance, and Lynne Nguyen for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter D. Funk.

Additional information

[Reviewing Editor: Martin Kreitman]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, Y.T., Hu, T., Arterburn, M. et al. PAQR Proteins: A Novel Membrane Receptor Family Defined by an Ancient7-Transmembrane Pass Motif. J Mol Evol 61, 372–380 (2005). https://doi.org/10.1007/s00239-004-0375-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-004-0375-2

Keywords

Navigation