Skip to main content
Log in

Rate Variation as a Function of Gene Origin in Plastid-Derived Genes of Peridinin-Containing Dinoflagellates

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Peridinin-pigmented dinoflagellates contain secondary plastids that seem to have undergone more nearly complete plastid genome reduction than other eukaryotes. Many typically plastid-encoded genes appear to have been transferred to the nucleus, with a few remaining genes found on minicircles. To understand better the evolution of the dinoflagellate plastid, four categories of plastid-associated genes in dinoflagellates were defined based on their history of transfer and evaluated for rate of sequence evolution, including minicircle genes (presumably plastid-encoded), genes probably transferred from the plastid to the nucleus (plastid-transferred), and genes that were likely acquired directly from the nucleus of the previous plastid host (nuclear-transferred). The fourth category, lateral-transferred genes, are plastid-associated genes that do not appear to have a cyanobacterial origin. The evolutionary rates of these gene categories were compared using relative rate tests and likelihood ratio tests. For comparison with other secondary plastid-containing organisms, rates were calculated for the homologous sequences from the haptophyte Emiliania huxleyi. The evolutionary rate of minicircle and plastid-transferred genes in the dinoflagellate was strikingly higher than that of nuclear-transferred and lateral-transferred genes and, also, substantially higher than that of all plastid-associated genes in the haptophyte. Plastid-transferred genes in the dinoflagellate had an accelerated rate of evolution that was variable but, in most cases, not as extreme as the minicircle genes. Furthermore, the nuclear-transferred and lateral-transferred genes showed rates of evolution that are similar to those of other taxa. Thus, nucleus-to-nucleus transferred genes have a more typical rate of sequence evolution, while those whose history was wholly or partially within the dinoflagellate plastid genome have a markedly accelerated rate of evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Allen J, Raven J (1996) Free-radical-induced mutation vs. redox regulation: costs and benefits of genes in organelles. J Mol Evol 42:482–492

    CAS  PubMed  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Google Scholar 

  • Bachvaroff TR, Concepcion GT, Rogers CR, Delwiche CF (2004) Dinoflagellate EST data indicate massive transfer of chloroplast genes to the nucleus. Protist 155:65–78

    Article  CAS  PubMed  Google Scholar 

  • Barbrook A, Howe C (2000) Minicircular plastid DNA in the dinoflagellate Amphidinium operculatum. Mol Gen Genet 263:152–158

    CAS  PubMed  Google Scholar 

  • Barbrook A, Symington H, Nisbet R, Larkum A, Howe C (2001) Organisation and expression of the plastid genome of the dinoflagellate Amphidinium operculatum. Mol Genet Genomics 266:632–638

    Article  CAS  PubMed  Google Scholar 

  • Chesnick JM, Morden CW, Schmieg A (1996) Identity of the endosymbiont of Peridinium foliaceum (Pyrrophyta): analysis of the rbcLS operon. J Phycol 32:850–857

    CAS  Google Scholar 

  • Cooper A, Lalueza-Fox C, Anderson S, Rambaut A, Austin J, Ward R (2001) Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution. Nature 409:704–707

    Article  CAS  PubMed  Google Scholar 

  • Delwiche CF (1999) Tracing the thread of plastid diversity through the tapestry of life. Am Nat 154:S164–S177

    Article  PubMed  Google Scholar 

  • Delwiche CF, Palmer JD (1997) The origin of plastids and their spread via secondary symbiosis. Plant Syst Evol 11:S53–S86

    Google Scholar 

  • Douglas S, Zauner S, Fraunholz M, Beaton M, Penny S, Deng LT, Wu XN, Reith M, Cavalier-Smith T, Maier UG (2001) The highly reduced genome of an enslaved algal nucleus. Nature 410:1091–1096

    Article  CAS  PubMed  Google Scholar 

  • Douglas SE, Penny SL (1999) The plastid genome of the cryptophyte alga, Guillardia theta: complete sequence and conserved synteny groups confirm its common ancestry with red algae. J Mol Evol 48:236–244

    CAS  PubMed  Google Scholar 

  • Durnford D, Deane J, Tan S, McFadden GI, Gantt E, Green B (1999) A phylogenetic assessment of the eukaryotic light-harvesting antenna protein, with implications for plastid evolution. J Mol Evol 48:59–68

    CAS  PubMed  Google Scholar 

  • Fagan T, Hastings J, Morse D (1998) The phylogeny of glyceraldehyde-3-phosphate dehydrogenase indicates lateral gene transfer from cryptomonads to dinoflagellates. J Mol Evol 47:633–639

    CAS  PubMed  Google Scholar 

  • Fast NM, Kissinger JC, Roos DS, Keeling PJ (2001) Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. Mol Biol Evol 18:418–426

    CAS  PubMed  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1988) Phylogenies from molecular sequences: inference and reliability. Annu Rev Genet 22:521–565

    Article  CAS  PubMed  Google Scholar 

  • Gray M, Spencer D (1996) Organellar evolution. In: Roberts DM, Sharp PM, Alderson G, Collins M (eds) Evolution of microbial life. Cambridge Universtiy Press, Cambridge, pp 109–126

    Google Scholar 

  • Grzebyk D, Schofield O, Vetriani C, Falkowski PG (2003) The mesozoic radiation of eukaryotic algae: the portable plastid hypothesis. J Phycol 39:1–10

    Google Scholar 

  • Hackett JD, Yoon HS, Soares MB, Bonaldo MF, Casavant TL, Scheetz TE, Nosenko T, Bhattacharya D (2004) Migration of the plastid genome to the nucleus in a peridinin dinoflagellate. Curr Biol 14:213–218

    Article  CAS  PubMed  Google Scholar 

  • Harper JT, Keeling PJ (2003) Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids. Mol Biol Evol 20:1730–1735

    CAS  PubMed  Google Scholar 

  • Hiller RG (2001) ‘Empty’ minicircles and petB/atpA and psbD/psbE (cytb 559 a) genes in tandem in Amphidinium carterae plastid DNA. FEBS Lett 505:449–452

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Rannala B (1997) Phylogenetic methods come of age: testing hypotheses in an evolutionary context. Science 276:227–232

    Article  CAS  PubMed  Google Scholar 

  • Ishida KI, Green BR (2002) Second- and third-hand chloroplasts in dinoflagellates: Phylogeny of oxygen-evolving enhancer1 (PsbO) protein reveals replacement of a nuclear-encoded plastid gene by that of a haptophyte tertiary endosymbiont. Proc Natl Acad Sci USA 99:9294–9299

    CAS  PubMed  Google Scholar 

  • Jukes T, Cantor C (1969) Evolution of protein molecules. In: Munro H (ed) Mammalian protein metabolism. Academic Press, New York

  • Kowallik KV, Stoebe B, Schaffran I, Kroth-Pancic P, Freier U (1995) The chloroplast genome of a chlorophyll a+c containing alga, Odontella sinensis. Plant Mol Biol Rep 13:336–342

    CAS  Google Scholar 

  • Laatsch T, Zauner S, Stoebe-Maier B, Kowallik KV, Maier U-G (2004) Plastid-derived single gene minicircles of the dinoflagellate Ceratium horridum are localized in the nucleus. Mol Biol Evol 21:1318–1322

    CAS  PubMed  Google Scholar 

  • Liaud M, Brandt U, Scherzinger M, Cerff R (1997) Evolutionary origin of cryptomonad microalgae: two novel chloroplast/cytosol-specific GAPDH genes as potential markers of ancestral endosymbiont and host cell components. J Mol Evol 44:S28–S37

    CAS  PubMed  Google Scholar 

  • Lutzoni F, Pagel M (1997) Accelerated evolution as a consequence of transitions to mutualism. Proc Natl Acad Sci USA 94:11422–11427

    Article  CAS  PubMed  Google Scholar 

  • Maddison W, Maddison P (2000) MacClade version 4: analysis of phylogeny and character evolution. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Martin W, Stoebe B, Goremykin V, Hansmann S, Hasegawa M, Kowallik KV (1998) Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393:162–165

    CAS  PubMed  Google Scholar 

  • Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99:12246–12251

    CAS  PubMed  Google Scholar 

  • McEwan M, Keeling PJ (2004) Hsp90, tubulin and actin are retained in the tertiary endosymbiont genome of Kryptoperidinium foliaceum. J Euk Microbiol 51:651–659

    CAS  PubMed  Google Scholar 

  • Medlin LK, Kooistra WHCF, Potter D, Saunders GW, Andersen RA (1997) Phylogenetic relationships of the ‘golden algae’ (haptophytes, heterokonts, chromophytes) and their plastids. Plant Syst Evol 11 (Suppl):187–219

    CAS  Google Scholar 

  • Nisbet R, Koumandou V, Barbrook A, Howe C (2004) Novel plastid gene minicircles in the dinoflagellate Amphidinium operculatum. Gene 331:141–147

    Article  PubMed  CAS  Google Scholar 

  • Palmer JD, Delwiche CF (1998) The origin and evolution of plastids and their genomes. In: Soltis D, Soltis P, Doyle JJ (eds) Molecular systematics of plants. Kluwer Academic, Norwell, MA, pp 374–409

    Google Scholar 

  • Patron N, Rogers M, Keeling PJ (2004) Gene replacement of fructose 1,6 bisphosphate aldolase supports the hypothesis of a single photosynthetic ancestor of chromalveolates. Eukaryot. Cell 3:1169–1175

    Article  CAS  PubMed  Google Scholar 

  • Race H, Herrmann R, Martin W (1999) Why have organelles retained genomes? Trends Genet 15:364–370

    Article  CAS  PubMed  Google Scholar 

  • Reith M, Munholland J (1995) Complete nucleotide sequence of the Porphyra purpurea chloroplast genome. Plant Mol Biol Rep 13:333–335

    CAS  Google Scholar 

  • Robinson M, Gouy M, Gautier C, Mouchiroud D (1998) Sensitivity of the relative-rate test to taxonomic sampling. Mol Biol Evol 15:1091–1098

    CAS  PubMed  Google Scholar 

  • Robinson-Rechavi M, Huchon D (2000) RRTree: relative-rate tests between groups of sequences on a phylogenetic tree. Bioinformatics 16:296–297

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Puerta MV, Bachvaroff TR, Delwiche CF (2005) The complete plastid genome sequence of the haptophyte Emiliania huxleyi: a comparison to other plastid genomes. DNA Res 12:151–156

    CAS  PubMed  Google Scholar 

  • Sarich V, Wilson A (1973) Generation time and genomic evolution in primates. Science 179:1144–1147

    CAS  PubMed  Google Scholar 

  • Stevens J, Rambaut A (2001) Evolutionary rate differences in Trypanosomes. Infect Genet Evol 1:143–150

    Article  CAS  PubMed  Google Scholar 

  • Swofford DL, Olsen GJ, Waddell PJ, Hillis DM (2002) PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Takishita K, Uchida A (1999) Molecular cloning and nucleotide sequence analysis of psbA from the dinoflagellates: Origin of the dinoflagellate plastid. Phycol Res 47:207–16

    CAS  Google Scholar 

  • Takishita K, Ishikura M, Koike K, Maruyama T (2003) Comparison of phylogenies based on nuclear-encoded SSU rDNA and plastid-encoded psbA in the symbiotic dinoflagellate genus Symbiodinium. Phycologia 42:285–291

    Article  Google Scholar 

  • Wu C-I, Li W-H (1985) Evidence for higher rates of nucleotide substitution in rodents than in man. Proc Natl Acad Sci USA 82:1741–1745

    CAS  PubMed  Google Scholar 

  • Yoon HS, Hackett JD, Bhattacharya D (2002a) A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis. Proc Natl Acad Sci USA 99:11724–11729

    CAS  Google Scholar 

  • Yoon HS, Hackett JD, Pinto G, Bhattacharya D (2002b) The single, ancient origin of chromist plastids. Proc Natl Acad Sci USA 99:15507–15512

    CAS  Google Scholar 

  • Zhang Z, Green BR, Cavalier-Smith T (1999) Single gene circles in dinoflagellate chloroplast genomes. Nature 400:155–159

    CAS  PubMed  Google Scholar 

  • Zhang Z, Green BR, Cavalier-Smith T (2000) Phylogeny of ultra-rapidly evolving dinoflagellate chloroplast genes: a possible common origin for sporozoan and dinoflagellate plastids. J Mol Evol 51:26–40

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NSF Grant MCB-9984284. We are grateful to E. Gantt, E. Herman, and C. Mitter for helpful suggestions, G. Concepcion and C. Rogers as well as other members of the Delwiche lab for technical support, and the Alfred P. Sloan Foundation for providing seed resources. We also thank anonymous reviewers for useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles F. Delwiche.

Additional information

[Reviewing Editor: Dr. Debashish Battacharya]

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bachvaroff, T.R., Sanchez-Puerta, M.V. & Delwiche, C.F. Rate Variation as a Function of Gene Origin in Plastid-Derived Genes of Peridinin-Containing Dinoflagellates. J Mol Evol 62, 42–52 (2006). https://doi.org/10.1007/s00239-004-0365-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-004-0365-4

Keywords

Navigation