Skip to main content
Log in

Evolutionary Relationships and Protein Domain Architecture in an Expanded Calpain Superfamily in Kinetoplastid Parasites

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Employing whole-genome analysis we have characterized a large family of genes coding for calpain-related proteins in three kinetoplastid parasites. We have defined a total of 18 calpain-like sequences in Trypanosoma brucei, 27 in Leishmania major, and 24 in Trypanosoma cruzi. Sequence characterization revealed a well-conserved protease domain in most proteins, although residues critical for catalytic activity were frequently altered. Many of the proteins contain a novel N-terminal sequence motif unique to kinetoplastids. Furthermore, 24 of the sequences contain N-terminal fatty acid acylation motifs indicating association of these proteins with intracellular membranes. This extended family of proteins also includes a group of sequences that completely lack a protease domain but is specifically related to other kinetoplastid calpain-related proteins by a highly conserved N-terminal domain and by genomic organization. All sequences lack the C-terminal calmodulin-related calcium-binding domain typical of most mammalian calpains. Our analysis emphasizes the highly modular structure of calpains and calpain-like proteins, suggesting that they are involved in diverse cellular functions. The discovery of this surprisingly large family of calpain-like proteins in lower eukaryotes that combines novel and conserved sequence modules contributes to our understanding of the evolution of this abundant protein family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Barnes TM, Hodgkin J (1996) The tra–3 sex determination gene of Caenorhabditis elegans encodes a member of the calpain regulatory protease family. EMBO J 15:4477–4484

    PubMed  CAS  Google Scholar 

  • Bartlett GJ, Borkakoti N, Thornton JM (2003) Catalysing new reactions during evolution: economy of residues and mechanism. J Mol Biol 331:829–860

    Article  PubMed  CAS  Google Scholar 

  • Berti PJ, Storer AC (1995) Alignment/phylogeny of the papain superfamily of cysteine proteases. J Mol Biol 246:273–283

    Article  PubMed  CAS  Google Scholar 

  • Beverley SM (2003) Protozomics: trypanosomatid parasite genetics comes of age. Nat Rev Genet 4:11–19

    Article  PubMed  CAS  Google Scholar 

  • Bhatt A, Kaverina I, Otey C, Huttenlocher A (2002) Regulation of focal complex composition and disassembly by the calcium-dependent protease calpain. J Cell Sci 115:3415–3425

    PubMed  CAS  Google Scholar 

  • Bourgeau G, Lapointe H, Peloquin P, Mayrand D (1992) Cloning, expression, and sequencing of a protease gene (tpr) from Porphyromonas gingivalis W83 in Escherichia coli. Infect Immun 60:3186–3192

    PubMed  CAS  Google Scholar 

  • Boutin JA (1997) Myristoylation. Cell Signal 9:15–35

    Article  PubMed  CAS  Google Scholar 

  • Bringaud F, Vedrenne C, Cuvillier A, Parzy D, Baltz D, Tetaud E, Pays E, Venegas J, Merlin G, Baltz T (1998) Conserved organization of genes in trypanosomatids. Mol Biochem Parasitol 94:249–264

    Article  PubMed  CAS  Google Scholar 

  • Burn P, Burger MM (1987) The cytoskeletal protein vinculin contains transformation-sensitive, covalently bound lipid. Science 235:476–479

    PubMed  CAS  Google Scholar 

  • Cox FEG, Kreier JP, Wakelin D (1998) Parasitology. In: Collier L, Balows A, Sussman M (eds) Topley & Wilson’s microbiology and microbial infections. Arnold, London

    Google Scholar 

  • de Meeus T, Renaud F (2002) Parasites within the new phylogeny of eukaryotes. Trends Parasitol 18:247–251

    PubMed  Google Scholar 

  • Dear N, Matena K, Vingron M, Boehm T (1997) A new subfamily of vertebrate calpains lacking a calmodulin-like domain: implications for calpain regulation and evolution. Genomics 45:175–184

    Article  PubMed  CAS  Google Scholar 

  • Dear TN, Boehm T (1999) Diverse mRNA expression patterns of the mouse calpain genes Capn5, Capn6 and Capn11 during development. Mech Dev 89:201–209

    Article  PubMed  CAS  Google Scholar 

  • Denison SH, Orejas M, Arst HN Jr (1995) Signaling of ambient pH in Aspergillus involves a cysteine protease. J Biol Chem 270:28519–28522

    PubMed  CAS  Google Scholar 

  • Devedjiev Y, Popov A, Atanasov B, Bartunik HD (1997) X-ray structure at 1.76 A resolution of a polypeptide phospholipase A2 inhibitor. J Mol Biol 266:160–172

    Article  PubMed  CAS  Google Scholar 

  • Diviani D, Scott JD (2001) AKAP signaling complexes at the cytoskeleton. J Cell Sci 114:1431–1437

    PubMed  CAS  Google Scholar 

  • El-Sayed NM, Hegde P, Quackenbush J, Melville SE, Donelson JE (2000) The African trypanosome genome. Int J Parasitol 30:329–345

    PubMed  CAS  Google Scholar 

  • El-Sayed NM, Ghedin E, Song J, MacLeod A, Bringaud F, Larkin C, Wanless D, Peterson J, Hou L, Taylor S, Tweedie A, Biteau N, Khalak HG, Lin X, Mason T, Hannick L, Caler E, Blandin G, Bartholomeu D, Simpson AJ, Kaul S, Zhao H, Pai G, Van Aken S, Utterback T, Haas B, Koo HL, Umayam L, Suh B, Gerrard C, Leech V, Qi R, Zhou S, Schwartz D, Feldblyum T, Salzberg S, Tait A, Turner CM, Ullu E, White O, Melville S, Adams MD, Fraser CM, Donelson JE (2003) The sequence and analysis of Trypanosoma brucei chromosome II. Nucleic Acids Res 31:4856–4863

    Article  PubMed  CAS  Google Scholar 

  • Emori Y, Ohno S, Tobita M, Suzuki K (1986) Gene structure of calcium-dependent protease retains the ancestral organization of the calcium-binding protein gene. FEBS Lett 194:249–252

    Article  PubMed  CAS  Google Scholar 

  • Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83:731–801

    PubMed  CAS  Google Scholar 

  • Gull K (1999) The cytoskeleton of trypanosomatid parasites. Annu Rev Microbiol 53:629–655

    Article  PubMed  CAS  Google Scholar 

  • Hall N, Berriman M, Lennard NJ, Harris BR, Hertz-Fowler C, Bart-Delabesse EN, Gerrard CS, Atkin RJ, Barron AJ, Bowman S, Bray-Allen SP, Bringaud F, Clark LN, Corton CH, Cronin A, Davies R, Doggett J, Fraser A, Gruter E, Hall S, Harper AD, Kay MP, Leech V, Mayes R, Price C, Quail MA, Rabbinowitsch E, Reitter C, Rutherford K, Sasse J, Sharp S, Shownkeen R, MacLeod A, Taylor S, Tweedie A, Turner CM, Tait A, Gull K, Barrell B, Melville SE (2003) The DNA sequence of chromosome I of an African trypanosome: gene content, chromosome organisation, recombination and polymorphism. Nucleic Acids Res 31:4864–4873

    PubMed  CAS  Google Scholar 

  • Hertz-Fowler C, Ersfeld K, Gull K (2001) CAP5.5, a life-cycle-regulated, cytoskeleton-associated protein is a member of a novel family of calpain-related proteins in Trypanosoma brucei. Mol Biochem Parasitol 116:25–34

    Article  PubMed  CAS  Google Scholar 

  • Horikawa Y, Oda N, Cox NJ, Li X, Orho-Melander M, Hara M, Hinokio Y, Lindner TH, Mashima H, Schwarz PE, del Bosque-Plata L, Oda Y, Yoshiuchi I, Colilla S, Polonsky KS, Wei S, Concannon P, Iwasaki N, Schulze J, Baier LJ, Bogardus C, Groop L, Boerwinkle E, Hanis CL, Bell GI (2000) Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet 26:163–175

    PubMed  CAS  Google Scholar 

  • Hosfield CM, Elce JS, Davies PL, Jia Z (1999a) Crystal structure of calpain reveals the structural basis for Ca(2+)-dependent protease activity and a novel mode of enzyme activation. EMBO J 18:6880–6889

    Article  CAS  Google Scholar 

  • Hosfield CM, Ye Q, Arthur JS, Hegadorn C, Croall DE, Elce JS, Jia Z (1999b) Crystallization and X-ray crystallographic analysis of m-calpain, a Ca2+-dependent protease. Acta Crystallogr D Biol Crystallogr 55(8):1484–1846

    Article  CAS  Google Scholar 

  • Huang Y, Wang KK (2001) The calpain family and human disease. Trends Mol Med 7:355–362

    Article  PubMed  CAS  Google Scholar 

  • Jekely G, Friedrich P (1999) The evolution of the calpain family as reflected in paralogous chromosome regions. J Mol Evol 49:272–281

    PubMed  CAS  Google Scholar 

  • Lafaille JJ, Linss J, Krieger MA, Souto-Padron T, de Souza W, Goldenberg S (1989) Structure and expression of two Trypanosoma cruzi genes encoding antigenic proteins bearing repetitive epitopes. Mol Biochem Parasitol 35:127–136

    Article  PubMed  CAS  Google Scholar 

  • Lamb AL, Torres AS, O’Halloran TV, Rosenzweig AC (2000) Heterodimer formation between superoxide dismutase and its copper chaperone. Biochemistry 39:14720–14727

    PubMed  CAS  Google Scholar 

  • Maretzki D, Mariani M, Lutz HU (1990) Fatty acid acylation of membrane skeletal proteins in human erythrocytes. FEBS Lett 259:305–310

    Article  PubMed  CAS  Google Scholar 

  • Margis R, Margis-Pinheiro M (2003) Phytocalpains: orthologous calcium-dependent cysteine proteinases. Trends Plant Sci 8:58–62

    Article  PubMed  CAS  Google Scholar 

  • Mariani M, Maretzki D, Lutz HU (1993) A tightly membrane-associated subpopulation of spectrin is 3H-palmitoylated. J Biol Chem 268:12996–13001

    PubMed  CAS  Google Scholar 

  • Matthews KR, Gull K (1994) Evidence for an interplay between cell cycle progression and the initiation of differentiation between life cycle forms of African trypanosomes. J Cell Biol 125:1147–1156

    Article  PubMed  CAS  Google Scholar 

  • Maurer-Stroh S, Eisenhaber B, Eisenhaber F (2002) N-terminal N-myristoylation of proteins: prediction of substrate proteins from amino acid sequence. J Mol Biol 317:541–557

    PubMed  CAS  Google Scholar 

  • Moldoveanu T, Hosfield CM, Lim D, Elce JS, Jia Z, Davies PL (2002) A Ca(2+) switch aligns the active site of calpain. Cell 108:649–660

    Article  PubMed  CAS  Google Scholar 

  • Moldoveanu T, Jia Z, Davies PL (2004) Calpain activation by cooperative Ca2+ binding at two non-EF-hand sites. J Biol Chem 279:6106–6114

    PubMed  CAS  Google Scholar 

  • Mottram JC, Helms MJ, Coombs GH, Sajid M (2003) Clan CD cysteine peptidases of parasitic protozoa. Trends Parasitol 19:182–187

    Article  PubMed  CAS  Google Scholar 

  • Muller N, Hemphill A, Imboden M, Duvallet G, Dwinger RH, Seebeck T (1992) Identification and characterization of two repetitive non-variable antigens from African trypanosomes which are recognized early during infection. Parasitology 104(1):111–120

    Article  PubMed  Google Scholar 

  • Myler PJ, Audleman L, deVos T, Hixson G, Kiser P, Lemley C, Magness C, Rickel E, Sisk E, Sunkin S, Swartzell S, Westlake T, Bastien P, Fu G, Ivens A, Stuart K (1999) Leishmania major Friedlin chromosome 1 has an unusual distribution of protein-coding genes. Proc Natl Acad Sci USA 96:2902–2906

    Article  PubMed  CAS  Google Scholar 

  • Newlon MG, Roy M, Morikis D, Hausken ZE, Coghlan V, Scott JD, Jennings PA (1999) The molecular basis for protein kinase A anchoring revealed by solution NMR. Nat Struct Biol 6:222–227

    PubMed  CAS  Google Scholar 

  • Newlon MG, Roy M, Morikis D, Carr DW, Westphal R, Scott JD, Jennings PA (2001) A novel mechanism of PKA anchoring revealed by solution structures of anchoring complexes. EMBO J 20:1651–1662

    Article  PubMed  CAS  Google Scholar 

  • Ohno S, Emori Y, Imajoh S, Kawasaki H, Kisaragi M, Suzuki K (1984) Evolutionary origin of a calcium-dependent protease by fusion of genes for a thiol protease and a calcium-binding protein? Nature 312:566–570

    Article  PubMed  CAS  Google Scholar 

  • Ono Y, Sorimachi H, Suzuki K (1998) Structure and physiology of calpain, an enigmatic protease. Biochem Biophys Res Commun 245:289–294

    Article  PubMed  CAS  Google Scholar 

  • Pils B, Schultz J (2004) Inactive enzyme-homologues find new function in regulatory processes. J Mol Biol 340:399–404

    Article  PubMed  CAS  Google Scholar 

  • Resh MD, (1999) Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim Biophys Acta 1451:1–16

    PubMed  CAS  Google Scholar 

  • Reverter D, Strobl S, Fernandez-Catalan C, Sorimachi H, Suzuki K, Bode W (2001) Structural basis for possible calcium-induced activation mechanisms of calpains. Biol Chem 382:753–766

    Article  PubMed  CAS  Google Scholar 

  • Richard I, Broux O, Allamand V, et al. (1995) Mutations in the proteolytic enzyme calpain 3 cause limb–girdle muscular dystrophy type 2A. Cell 81:27–40

    Article  PubMed  CAS  Google Scholar 

  • Rizo J, Sudhof TC (1998) C2-domains, structure and function of a universal Ca2+-binding domain. J Biol Chem 273:15879–15882

    Article  PubMed  CAS  Google Scholar 

  • Sajid M, McKerrow JH (2002) Cysteine proteases of parasitic organisms. Mol Biochem Parasitol 120:1–21

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Kawashima S (2001) Calpain function in the modulation of signal transduction molecules. Biol Chem 382:743–751

    Article  PubMed  CAS  Google Scholar 

  • Saxena A, Worthey EA, Yan S, Leland A, Stuart KD, Myler PJ (2003) Evaluation of differential gene expression in Leishmania major Friedlin procyclics and metacyclics using DNA microarray analysis. Mol Biochem Parasitol 129:103–114

    Article  PubMed  CAS  Google Scholar 

  • Sorimachi H, Suzuki K (2001) The structure of calpain. J Biochem (Tokyo) 129:653–664

    CAS  Google Scholar 

  • Sorimachi H, Ishiura S, Suzuki K (1997) Structure and physiological function of calpains. Biochem J 328(3):721–732

    PubMed  CAS  Google Scholar 

  • Staufenbiel M, Lazarides E (1986) Ankyrin is fatty acid acylated in erythrocytes. Proc Natl Acad Sci USA 83:318–322

    PubMed  CAS  Google Scholar 

  • Stevens JR, Noyes HA, Dover GA, Gibson WC (1999) The ancient and divergent origins of the human pathogenic trypanosomes, Trypanosoma brucei and T. cruzi. Parasitology 118(1):107–116

    Article  PubMed  Google Scholar 

  • Strobl S, Fernandez-Catalan C, Braun M, Huber R, Masumoto H, Nakagawa K, Irie A, Sorimachi H, Bourenkow G, Bartunik H, Suzuki K, Bode W (2000) The crystal structure of calcium-free human m-calpain suggests an electrostatic switch mechanism for activation by calcium. Proc Natl Acad Sci USA 97:588–592

    Article  PubMed  CAS  Google Scholar 

  • Taveau M, Bourg N, Sillon G, Roudaut C, Bartoli M, Richard I (2003) Calpain 3 is activated through autolysis within the active site and lyzes sarcomeric and sarcolemmal components. Mol Cell Biol 23:9127–9135

    Article  PubMed  CAS  Google Scholar 

  • Todd AE, Orengo CA, Thornton JM (2001) Evolution of function in protein superfamilies, from a structural perspective. J Mol Biol 307:1113–1143

    Article  PubMed  CAS  Google Scholar 

  • Todd AE, Orengo CA, Thornton JM (2002) Sequence and structural differences between enzyme and nonenzyme homologs. Structure (Cambr) 10:1435–1451

    CAS  Google Scholar 

  • Tull D, Vince JE, Callaghan JM, Naderer T, Spurck T, McFadden GI, Currie G, Ferguson K, Bacic A, McConville MJ (2004) SMP-1, a member of a new family of small myristoylated proteins in kinetoplastid parasites, is targeted to the flagellum membrane in Leishmania. Mol Biol Cell 15:4775–4786

    Article  PubMed  CAS  Google Scholar 

  • Wilson ME, Young BM, Andersen KP, Weinstock JV, Metwali A, Ali KM, Donelson JE (1995) A recombinant Leishmania chagasi antigen that stimulates cellular immune responses in infected mice. Infect Immun 63:2062–2069

    PubMed  CAS  Google Scholar 

  • Worthey EA, Martinez-Calvillo S, Schnaufer A, Aggarwal G, Cawthra J, Fazelinia G, Fong C, Fu G, Hassebrock M, Hixson G, Ivens AC, Kiser P, Marsolini F, Rickell E, Salavati R, Sisk E, Sunkin SM, Stuart KD, Myler PJ (2003) Leishmania major chromosome 3 contains two long convergent polycistronic gene clusters separated by a tRNA gene. Nucleic Acids Res 31:4201–4210

    PubMed  CAS  Google Scholar 

  • Wu Y, Wang X, Liu X, Wang Y (2003) Data-mining approaches reveal hidden families of proteases in the genome of malaria parasite. Genome Res 13:601–616

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank David Lunt (Hull University) for constructive discussions concerning phylogenetic analysis and Robin Allaby (Astra Zeneca) for help during the initial phase of this project. This work was funded by a Wellcome Trust Programme Grant to K.G. and a University of Hull Start-Up Grant to K.E. Kinetoplastid genomic data were accessed via http://www.genedb.org/. Most of the genomic data were provided by the Wellcome Trust Sanger Institute and The Institute for Genomic Research (TIGR), which are supported by the Wellcome Trust and the National Institutes of Health, USA (Grant AI043062), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Ersfeld.

Additional information

[Reviewing Editor : Dr. John Oakeshott]

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ersfeld, K., Barraclough, H. & Gull, K. Evolutionary Relationships and Protein Domain Architecture in an Expanded Calpain Superfamily in Kinetoplastid Parasites. J Mol Evol 61, 742–757 (2005). https://doi.org/10.1007/s00239-004-0272-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-004-0272-8

Keywords

Navigation