Skip to main content
Log in

Spatial Patterns of Diversity at the Putative Recognition Domain of Resistance Gene Candidates in Wild Bean Populations

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Leucine Rich Repeats (LRR) domains have been identified on most known plant resistance genes and appear to be involved in the specific recognition of pathogen strains. Here we explore the processes which may drive the evolution of this putative recognition domain. We developed AFLP markers specifically situated in the LRR domain of members of the PRLJ1 complex Resistance Gene Candidate (RGC) family identified in common bean (Phaseolus vulgaris). Diversity for these markers was assessed in ten wild populations of P. vulgaris and compared to locally co-occurring pathogen populations of Colletotrichum lindemuthianum. Nine PRLJ1 LRR specific markers were obtained. Marker sequences revealed that RGC diversity at PRLJ1 is similar to that at other complex R-loci. Wild bean populations showed contrasting levels of PRLJ1 LRR diversity and were all significantly differentiated. We could not detect an effect of local C. lindemuthianum population diversity on the spatial distribution of P. vulgaris PRLJ1 diversity. However, host populations have been previously assessed for neutral (RAPD) markers and for resistance phenotypes to six strains of C. lindemuthianum isolated from cultivated bean fields. A comparative analysis of PRLJ1 LRR diversity and host diversity for resistance phenotypes indicated that evolutionary processes related to the antagonistic C. lindemuthianum/P. vulgaris interaction are likely to have shaped molecular diversity of the putative recognition domains of the PRLJ1 RGC family members.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SF Altschul TL Madden AA Schaffer JH Zhang Z Zhang W Miller DJ Lipman (1997) ArticleTitleGapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res 25 3389–3402 Occurrence Handle9254694

    PubMed  Google Scholar 

  2. D Banerjee X Zhang AF Bent (2001) ArticleTitleThe leucine-rich repeat domain can determine effective interaction between RPS2 and other host factors in Arabidopsis RPS2-mediated disease resistance. Genetics 158 323–439

    Google Scholar 

  3. BJ Bassam G Caetanoanolles PM Gresshoff (1991) ArticleTitleFast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196 80–83 Occurrence Handle1:CAS:528:DyaK3MXks1Ortr8%3D Occurrence Handle1716076

    CAS  PubMed  Google Scholar 

  4. K Belkhir P Borsa L Chikki J Goudet F Bonhomme (1998) GENETIX, version 3-3; un logiciel pour l’analyse des données en génétique des populations. Université Montpellier II .

    Google Scholar 

  5. J Bergelson M Kreitman EA Stahl DC Tian (2001) ArticleTitleEvolutionary dynamics of plant R-genes. Science 292 2281–2285 Occurrence Handle10.1126/science.1061337 Occurrence Handle1:CAS:528:DC%2BD3MXks1yrtrw%3D Occurrence Handle11423651

    Article  CAS  PubMed  Google Scholar 

  6. MA Botella JE Parker LN Frost PD Bittner-Eddy JL Beynon MJ Daniels et al. (1998) ArticleTitleThree genes of the Arabidopsis RPP1 complex resistance locus recognize distinct peronospora parasitica avirulence determinants. Plant Cell 10 1847–1860 Occurrence Handle1:CAS:528:DyaK1MXptVKq Occurrence Handle9811793

    CAS  PubMed  Google Scholar 

  7. RJ Bryson CE Caten DW Hollomon JA Bailey (1992) Sexuality and genetics of Colletotrichum. JA Bailey MJ Jeger (Eds) Colletotrichum: Biology, pathology and control. CAB London

    Google Scholar 

  8. JJ Burdon PH Thrall (1999) ArticleTitleSpatial and temporal patterns in coevolving plant and pathogen associations. Am Nat 153 S15–S33 Occurrence Handle10.1086/303209

    Article  Google Scholar 

  9. Cattan-Toupance I (1997) Diversité et répartition de la résistance à Colletotrichum lindemuthianum dans des populations naturelles de Phaseolus vulgaris L. Phd Thesis. Institut National Agronomique de Paris-Grignon, Paris, 110 pp

  10. I Cattan-Toupance Y Michalakis C Neema (1998) ArticleTitleGenetic structure of wild bean populations in their South-Andean centre of origin. Theor Appl Genet 96 844–851 Occurrence Handle10.1007/s001220050811 Occurrence Handle1:CAS:528:DyaK1cXksFSiu74%3D

    Article  CAS  Google Scholar 

  11. BA Chalhoub S Thibault V Laucou C Rameau H Hofte R Cousin (1997) ArticleTitleSilver staining and recovery of AFLP(TM) amplification products on large denaturing polyacrylamide gels. Biotechniques 22 216–218, 220 Occurrence Handle1:CAS:528:DyaK2sXhtFektL4%3D Occurrence Handle9043684

    CAS  PubMed  Google Scholar 

  12. J de Meaux I Cattan-Toupance C Lavigne T Langin C Neema (2003) ArticleTitlePolymorphism of a complex Resistance Gene Candidate family in wild populations of Common Bean (Phaseolus vulgaris) in Argentina: Comparison with phenotypic resistance polymorphism. Mol Ecol 12 263–273 Occurrence Handle10.1046/j.1365-294X.2003.01718.x Occurrence Handle1:CAS:528:DC%2BD3sXht1Sjuro%3D Occurrence Handle12492894

    Article  CAS  PubMed  Google Scholar 

  13. MS Dixon C Golstein CM Thomas EA van der Biezen JDG Jones (2000) ArticleTitleGenetic complexity of pathogen perception by plants: the examples of Rcr3, a tomato gene required specifically by Cf2. Proc Natl Acad Sci USA 97 8807–8814 Occurrence Handle10.1073/pnas.97.16.8807 Occurrence Handle1:CAS:528:DC%2BD3cXls12lt7c%3D Occurrence Handle10922039

    Article  CAS  PubMed  Google Scholar 

  14. J Ellis P Dodds T Pryor (2000) ArticleTitleStructure, function, and evolution of plant disease resistance genes. Curr Opin Plant Biol 3 278–284 Occurrence Handle1:CAS:528:DC%2BD3cXlsV2mt74%3D Occurrence Handle10873844

    CAS  PubMed  Google Scholar 

  15. JG Ellis GJ Lawrence JE Luck PN Dodds (1999) ArticleTitleIdentification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity. Plant Cell 11 495–506 Occurrence Handle1:CAS:528:DyaK1MXitlehsLo%3D Occurrence Handle10072407

    CAS  PubMed  Google Scholar 

  16. L Excoffier PE Smouse JM Quattro (1992) ArticleTitleAnalysis of molecular variance inferred from metric distances among DNA haplotypes—Application to human mitochondrial-DNA restriction data. Genetics 131 479–491 Occurrence Handle1:CAS:528:DyaK38XlsVCntro%3D Occurrence Handle1644282

    CAS  PubMed  Google Scholar 

  17. E Fenier-Cana V Geffroy C Macadré F Creusot P Imbert-Bolloré M Sévignac T Langin (2003) ArticleTitleCharacterization of expressed NBS-LRR resistance gene candidates from common bean. Theor Appl Genet 106 251–261 Occurrence Handle1:CAS:528:DC%2BD3sXltlegsA%3D%3D Occurrence Handle12582850

    CAS  PubMed  Google Scholar 

  18. H Flor (1956) ArticleTitleThe complementary genic systems in flax and flax rust. Adv Genet 8 29–54

    Google Scholar 

  19. SA Frank (1992) ArticleTitleModels of plant-pathogen coevolution. Trends Genet 8 213–219 Occurrence Handle1:STN:280:By2A2MfltlQ%3D Occurrence Handle1496557

    CAS  PubMed  Google Scholar 

  20. V Geffroy M Sevignac JCF De Oliveira G Fouilloux P Skroch P Thoquet et al. (2000) ArticleTitleInheritance of partial resistance against Colletotrichum lindemuthianum in Phaseolus vulgaris and co-localization of quantitative trait loci with genes involved in specific resistance. Mol Plant-Microbe Interact 13 287–296 Occurrence Handle1:CAS:528:DC%2BD3cXht1ymtbY%3D Occurrence Handle10707354

    CAS  PubMed  Google Scholar 

  21. V Geffroy D Sicard JCF de Oliveira M Sévignac S Cohen P Gepts et al. (1999) ArticleTitleIdentification of an ancestral resistance gene cluster involved in the coevolution process between Phaseolus vulgaris and its fungal pathogen Colletotrichum lindemuthianum. Mol Plant-Microbe Interact 12 774–784 Occurrence Handle1:CAS:528:DyaK1MXlsVyltL8%3D Occurrence Handle10494630

    CAS  PubMed  Google Scholar 

  22. J Goudet (1999) ArticleTitleFSTAT, a program to estimate and test gene diversities and fixation indices (version 2.8). Updated from Goudet J (1995) FSTAT (version 1.2): A computer program to calculate Fstatistics. Heredity 86 485–486

    Google Scholar 

  23. K Hammond-Kosack J Jones (1997) ArticleTitlePlant disease resistance genes. Annu Rev Plant Physiol Plant Molec Biol 48 575–607 Occurrence Handle10.1146/annurev.arplant.48.1.575 Occurrence Handle1:CAS:528:DyaK2sXjs1elsr0%3D

    Article  CAS  Google Scholar 

  24. F Ibarra-Perez B Ehdaie G Waines (1997) ArticleTitleEstimation of outcrossing rate in common bean. Crop Sci 37 60–65

    Google Scholar 

  25. Y Jia SA McAdams GT Bryan HP Hershey B Valent (2000) ArticleTitleDirect interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J 19 4004–4014 Occurrence Handle10921881

    PubMed  Google Scholar 

  26. JD Kelly RA Young (1996) ArticleTitleProposed symbols for anthracnose resistance genes. Annual report of bean improvement cooperative 39 20–24

    Google Scholar 

  27. B Kobe AV Kajava (2001) ArticleTitleThe leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol 11 725–732 Occurrence Handle10.1016/S0959-440X(01)00266-4 Occurrence Handle1:CAS:528:DC%2BD3MXpt1aqsL8%3D Occurrence Handle11751054

    Article  CAS  PubMed  Google Scholar 

  28. C Lemaire G Allegrucci M Naciri L Bahri-Sfar H Kara F Bonhomme (2000) ArticleTitleDo discrepancies between microsateilite and allozyme variation reveal differential selection between sea and lagoon in the sea bass (Dicentrarchus labrax)? Mol Ecol 9 457–467 Occurrence Handle1:CAS:528:DC%2BD3cXjtFahsbY%3D Occurrence Handle10736048

    CAS  PubMed  Google Scholar 

  29. JE Luck GJ Lawrence PN Dodds KW Shepherd JG Ellis (2000) ArticleTitleRegions outside of the Leucine-rich Repeats of flax rust resistance proteins play a role in specificity determination. Plant Cell 12 1367–1377 Occurrence Handle1:CAS:528:DC%2BD3cXmsVyjsLg%3D Occurrence Handle10948256

    CAS  PubMed  Google Scholar 

  30. JM McDowell M Dhandaydham TA Long MG Aarts S Goff EB Holub JL Dangl (1998) ArticleTitleIntragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis. Plant Cell 10 1861–1874 Occurrence Handle9811794

    PubMed  Google Scholar 

  31. BC Meyers DB Chin KA Shen S Sivaramakrishnan DO Lavelle Z Zhang RW Michelmore (1998) ArticleTitleThe major resistance gene cluster in lettuce is highly duplicated and spans several megabases. Plant Cell 10 1817–1832 Occurrence Handle1:CAS:528:DyaK1MXovF2j Occurrence Handle9811791

    CAS  PubMed  Google Scholar 

  32. RW Michelmore BC Meyers (1998) ArticleTitleClusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res 8 1113–1130 Occurrence Handle1:CAS:528:DyaK1cXotVWhurg%3D Occurrence Handle9847076

    CAS  PubMed  Google Scholar 

  33. C Neema C Lavigne J de Meaux I Cattan-Toupance JF de Oliveira A Deville T Langin (2001) ArticleTitleSpatial pattern for resistance to a pathogen. Theoretical approach and empirical approach at the phenotypic and molecular levels. Genet Sel Evol 33 S3–S23 Occurrence Handle10.1051/gse:2001107 Occurrence Handle1:CAS:528:DC%2BD38XmtVShug%3D%3D

    Article  CAS  Google Scholar 

  34. M Nei (1978) ArticleTitleEstimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89 583–590

    Google Scholar 

  35. L Noel TL Moores Der van EA Biezen M Parniske MJ Daniels JE Parker JD Jones (1999) ArticleTitlePronounced intraspecific haplotype divergence at the RPP5 complex disease resistance locus of Arabidopsis. Plant Cell 11 2099–2112 Occurrence Handle10559437

    PubMed  Google Scholar 

  36. M Parniske KE Hammondkosack C Golstein CM Thomas DA Jones K Harrison et al. (1997) ArticleTitleNovel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato. Cell 91 821–832 Occurrence Handle1:CAS:528:DyaK2sXotV2itbY%3D Occurrence Handle9413991

    CAS  PubMed  Google Scholar 

  37. MA Pastor-Corrales (1988) Variación patogénica de Colletotrichum lindemuthianum, el agente causal de la antracnosis del fijol y una propuesta para su estandardización. La antracnosis del frijol común Phaseolus vulgaris, en América Latina. Cali Columbia 212–251

    Google Scholar 

  38. J Rozas R Rozas (1999) ArticleTitleDnaSP version 3: An integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15 174–175 Occurrence Handle10.1093/bioinformatics/15.2.174 Occurrence Handle1:CAS:528:DyaK1MXisVOksrY%3D Occurrence Handle10089204

    Article  CAS  PubMed  Google Scholar 

  39. D Sicard Y Michalakis M Dron C Neema (1997) ArticleTitleGenetic diversity and pathogenic variation of Colletotrichum lindemuthianum in the three centers of diversity of ist host, Phaseolus vulgaris. Phytopathology 87 807–813

    Google Scholar 

  40. D Sicard SS Woo R Arroyo-Garcia O Ochoa D Nguyen A Korol et al. (1999) ArticleTitleMolecular diversity at the major cluster of disease resistance genes in cultivated and wild Lactuca spp. Theor Appl Genet 99 405–418 Occurrence Handle10.1007/s001220051251 Occurrence Handle1:CAS:528:DyaK1MXmsVKlu7c%3D

    Article  CAS  Google Scholar 

  41. JC Tu (1992) Colletotrichum lindemuthianum on bean: Population dynamics of the pathogen and breeding for resistance. JA Bailey MJ Jeger (Eds) Colletotrichum: Biology, pathoglogy and control. CABI Wallingford 203–224

    Google Scholar 

  42. RAL Van der Hoorn M Kruijt R Roth BF Brandwagt MHAJ Joosten PJGM De Wit (2001) ArticleTitleIntragenic recombination generated two distinct Cf genes that mediate AVR9 recognition in the natural population of Lycopersicon pimpinellifolium. Proc Natl Acad Sci USA 98 10493–10498 Occurrence Handle10.1073/pnas.181241798 Occurrence Handle1:CAS:528:DC%2BD3MXmvFWhs7k%3D Occurrence Handle11517316

    Article  CAS  PubMed  Google Scholar 

  43. VLB Velasquez P Gepts (1994) ArticleTitleRFLP diversity of common bean (Phaseolus vulgaris) in its centers of origin. Genome 37 256–263 Occurrence Handle1:CAS:528:DyaK2MXit1SqsQ%3D%3D

    CAS  Google Scholar 

  44. P Vos R Rogers M Bleeker M Reijans T Vandelee M Hornes et al. (1995) ArticleTitleAFLP—A new technique for DNA-fingerprinting. Nucleic Acids Res 23 4407–4414 Occurrence Handle1:CAS:528:DyaK2MXpslensbo%3D Occurrence Handle7501463

    CAS  PubMed  Google Scholar 

  45. BS Weir CC Cockerham (1984) ArticleTitleEstimating F-statistics for the analysis of population structure. Evolution 38 1358–1370

    Google Scholar 

  46. S Wright (1965) ArticleTitleThe interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19 395–420

    Google Scholar 

  47. ND Young (2000) ArticleTitleThe genetic architecture of resistance. Curr Opin Plant Biol 3 285–290 Occurrence Handle1:CAS:528:DC%2BD3cXlsV2mt78%3D Occurrence Handle10873848

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Neema.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Meaux, J., Neema, C. Spatial Patterns of Diversity at the Putative Recognition Domain of Resistance Gene Candidates in Wild Bean Populations . J Mol Evol 57 (Suppl 1), S90–S102 (2003). https://doi.org/10.1007/s00239-003-0011-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-003-0011-6

Keywords

Navigation