Skip to main content
Log in

Association between vascular calcification in intracranial vertebrobasilar circulation and luminal stenosis

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

The study aims to assess the correlation and association between calcium burden and luminal stenosis in the vertebrobasilar circulation.

Methods

We evaluated 166 patients [mean age, 79.8 ± 8.8 (SD) with 93 males] with stroke symptoms. The calcification patterns were assessed on non-contrast CT (NCCT); quantitative calcium burden [Agatston-Janowitz (AJ) calcium score, volume, and mass] on the initial non-contrast phase of CT perfusion (CTP); and the qualitative and quantitative luminal stenosis on CT angiography (CTA) studies. We calculated the correlation coefficient and association between measures of calcium burden and luminal stenosis.

Results

Two hundred twenty-eight of 498 arteries (45.8%) had detectable calcification on NCCT and measurable stenosis in 169 of 498 arteries (33.9%) on CTA. We found a moderate correlation between qualitative calcium burden and qualitative (0.51 for R1 and 0.62 for R2, p < 0.01) as well as quantitative luminal stenosis (0.67 for R1 and 0.69 for R2, p < 0.01). There was a moderate correlation of AJ score (0.66), volume (0.68), and mass of calcification (0.60, p < 0.01) with luminal stenosis measurements. The quantitative calcium burden and luminal stenosis showed statistically significant differences between different qualitative categories of calcium burden (p < 0.001 in both readers). However, severe stenosis was not seen even with the advanced circumferential wall calcification (mean stenosis of 35.3–40.7%).

Conclusion

Our study showed a moderate correlation between higher burden of vascular calcification and the degree of luminal stenosis. However, higher calcium burden and circumferential wall calcification were not associated with severe luminal stenosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data will be available and shared on making personal requests to the corresponding author.

Code availability

The calcium scoring of the vertebrobasilar arteries was performed using VitreaTM advanced visualization application (Canon Medical Systems — Version 7.9.0.723).

References

  1. Abdelbaky A, Corsini E, Figueroa AL et al (2013) Focal arterial inflammation precedes subsequent calcification in the same location: a longitudinal FDG-PET/CT study. Circ Cardiovasc Imaging 6:747–754. https://doi.org/10.1161/CIRCIMAGING.113.000382

    Article  PubMed  Google Scholar 

  2. Hayden MR, Tyagi SC, Kolb L et al (2005) Vascular ossification-calcification in metabolic syndrome, type 2 diabetes mellitus, chronic kidney disease, and calciphylaxis-calcific uremic arteriolopathy: the emerging role of sodium thiosulfate. Cardiovasc Diabetol 4:4. https://doi.org/10.1186/1475-2840-4-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vengrenyuk Y, Carlier S, Xanthos S et al (2006) A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Natl Acad Sci U S A 103:14678–14683. https://doi.org/10.1073/pnas.0606310103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kelly-Arnold A, Maldonado N, Laudier D et al (2013) Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries. Proc Natl Acad Sci U S A 110:10741–10746. https://doi.org/10.1073/pnas.1308814110

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bartstra JW, van den BTC, Van HW, et al (2020) Intracranial arterial calcification: prevalence, risk factors, and consequences. J Am Coll Cardiol 76:1595–1604. https://doi.org/10.1016/j.jacc.2020.07.056

    Article  PubMed  Google Scholar 

  6. Bos D, Portegies MLP, van der Lugt A et al (2014) Intracranial carotid artery atherosclerosis and the risk of stroke in whites: the Rotterdam Study. JAMA Neurol 71:405–411. https://doi.org/10.1001/jamaneurol.2013.6223

    Article  PubMed  Google Scholar 

  7. Mackey RH, Venkitachalam L, Sutton-Tyrrell K (2007) Calcifications, arterial stiffness and atherosclerosis. Adv Cardiol 44:234–244. https://doi.org/10.1159/000096744

    Article  CAS  PubMed  Google Scholar 

  8. Micheletti RG, Fishbein GA, Currier JS, Fishbein MC (2008) Mönckeberg sclerosis revisited: a clarification of the histologic definition of Mönckeberg sclerosis. Arch Pathol Lab Med 132:43–47. https://doi.org/10.5858/2008-132-43-MSRACO

    Article  PubMed  Google Scholar 

  9. Vos A, Van Hecke W, Spliet WGM et al (2016) Predominance of nonatherosclerotic internal elastic lamina calcification in the intracranial internal carotid artery. Stroke 47:221–223. https://doi.org/10.1161/STROKEAHA.115.011196

    Article  PubMed  Google Scholar 

  10. Yang W-J, Zheng L, Wu X-H et al (2018) Postmortem study exploring distribution and patterns of intracranial artery calcification. Stroke 49:2767–2769. https://doi.org/10.1161/STROKEAHA.118.022591

    Article  PubMed  Google Scholar 

  11. Du H, Yang W, Chen X (2022) Histology-verified intracranial artery calcification and its clinical relevance with cerebrovascular disease. Front Neurol 12:

  12. Pikija S, Magdič J, Knific A (2014) Are arterial calcifications a marker of remodeling in vertebrobasilar territory? Stroke 45:874–876. https://doi.org/10.1161/STROKEAHA.113.003518

    Article  CAS  PubMed  Google Scholar 

  13. Markus HS, van der Worp HB, Rothwell PM (2013) Posterior circulation ischaemic stroke and transient ischaemic attack: diagnosis, investigation, and secondary prevention. Lancet Neurol 12:989–998. https://doi.org/10.1016/S1474-4422(13)70211-4

    Article  PubMed  Google Scholar 

  14. Marquardt L, Kuker W, Chandratheva A et al (2009) Incidence and prognosis of > or = 50% symptomatic vertebral or basilar artery stenosis: prospective population-based study. Brain J Neurol 132:982–988. https://doi.org/10.1093/brain/awp026

    Article  CAS  Google Scholar 

  15. Gulli G, Marquardt L, Rothwell PM, Markus HS (2013) Stroke risk after posterior circulation stroke/transient ischemic attack and its relationship to site of vertebrobasilar stenosis: pooled data analysis from prospective studies. Stroke 44:598–604. https://doi.org/10.1161/STROKEAHA.112.669929

    Article  PubMed  Google Scholar 

  16. Woodcock RJ, Goldstein JH, Kallmes DF et al (1999) Angiographic correlation of CT calcification in the carotid siphon. AJNR Am J Neuroradiol 20:495–499

    PubMed  Google Scholar 

  17. Kassab MY, Gupta R, Majid A et al (2009) Extent of intra-arterial calcification on head CT is predictive of the degree of intracranial atherosclerosis on digital subtraction angiography. Cerebrovasc Dis 28:45–48. https://doi.org/10.1159/000219296

    Article  PubMed  Google Scholar 

  18. Taoka T, Iwasaki S, Nakagawa H et al (2006) Evaluation of arteriosclerotic changes in the intracranial carotid artery using the calcium score obtained on plain cranial computed tomography scan: correlation with angiographic changes and clinical outcome. J Comput Assist Tomogr 30:624–628

    Article  PubMed  Google Scholar 

  19. Baradaran H, Patel P, Gialdini G et al (2017) Association between intracranial atherosclerotic calcium burden and angiographic luminal stenosis measurements. Am J Neuroradiol 38:1723–1729. https://doi.org/10.3174/ajnr.A5310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fakhran S, Alhilali L, Branstetter BF (2013) Yield of CT angiography and contrast-enhanced MR imaging in patients with dizziness. AJNR Am J Neuroradiol 34:1077–1081. https://doi.org/10.3174/ajnr.A3325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen K, Schneider ALC, Llinas RH, Marsh EB (2016) Keep it simple: vascular risk factors and focal exam findings correctly identify posterior circulation ischemia in “dizzy” patients. BMC Emerg Med 16:37. https://doi.org/10.1186/s12873-016-0101-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guarnizo A, Farah K, Lelli DA et al (2021) Limited usefulness of routine head and neck CT angiogram in the imaging assessment of dizziness in the emergency department. Neuroradiol J 34:335–340. https://doi.org/10.1177/1971400920988665

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ma G, YU Y, Duan H, et al (2018) Subtraction CT angiography in head and neck with low radiation and contrast dose dual-energy spectral CT using rapid kV-switching technique. Br J Radiol 91:20170631. https://doi.org/10.1259/bjr.20170631

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pikija S, Magdič J, Hojs-Fabjan T (2013) Calcifications of vertebrobasilar arteries on CT: detailed distribution and relation to risk factors in 245 ischemic stroke patients. BioMed Res Int 2013:918970. https://doi.org/10.1155/2013/918970

    Article  PubMed  PubMed Central  Google Scholar 

  25. Samuels OB, Joseph GJ, Lynn MJ et al (2000) A standardized method for measuring intracranial arterial stenosis. AJNR Am J Neuroradiol 21:643–646

    CAS  PubMed  PubMed Central  Google Scholar 

  26. (1998) Prognosis of patients with symptomatic vertebral or basilar artery stenosis. Stroke 29:1389–1392. https://doi.org/10.1161/01.STR.29.7.1389

  27. Diprose WK, Diprose JP, Tarr GP et al (2020) Vertebrobasilar artery calcification and outcomes in posterior circulation large vessel occlusion thrombectomy. Stroke 51:1301–1304. https://doi.org/10.1161/STROKEAHA.119.027958

    Article  PubMed  Google Scholar 

  28. Gökçal E, Niftaliyev E, Özdemir T et al (2018) The association of vertebrobasilar calcification with etiological subtypes, stroke recurrence and outcome in acute brainstem ischemic stroke. Neurol Neurochir Pol 52:188–193. https://doi.org/10.1016/j.pjnns.2017.09.010

    Article  PubMed  Google Scholar 

  29. Ritz K, Denswil NP, Stam OCG et al (2014) Cause and mechanisms of intracranial atherosclerosis. Circulation 130:1407–1414. https://doi.org/10.1161/CIRCULATIONAHA.114.011147

    Article  PubMed  Google Scholar 

  30. Yang W-J, Wong K-S, Chen X-Y (2017) Intracranial atherosclerosis: from microscopy to high-resolution magnetic resonance imaging. J Stroke 19:249–260. https://doi.org/10.5853/jos.2016.01956

    Article  PubMed  PubMed Central  Google Scholar 

  31. Akgun V, Battal B, Bozkurt Y et al (2013) Normal anatomical features and variations of the vertebrobasilar circulation and its branches: an analysis with 64-detector row CT and 3T MR angiographies. Sci World J 2013:620162. https://doi.org/10.1155/2013/620162

    Article  Google Scholar 

  32. Omotoso BR, Harrichandparsad R, Satyapal KS et al (2021) Radiological anatomy of the intracranial vertebral artery in a select South African cohort of patients. Sci Rep 11:12138. https://doi.org/10.1038/s41598-021-91744-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. van der Toorn JE, Engelkes SR, Ikram MK et al (2019) Vertebrobasilar artery calcification: prevalence and risk factors in the general population. Atherosclerosis 286:46–52. https://doi.org/10.1016/j.atherosclerosis.2019.05.001

    Article  CAS  PubMed  Google Scholar 

  34. Chimowitz MI, Lynn MJ, Derdeyn CP et al (2011) Stenting versus aggressive medical therapy for intracranial arterial stenosis. N Engl J Med 365:993–1003. https://doi.org/10.1056/NEJMoa1105335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Markus HS, Larsson SC, Kuker W et al (2017) Stenting for symptomatic vertebral artery stenosis: the Vertebral Artery Ischaemia Stenting Trial. Neurology 89:1229–1236. https://doi.org/10.1212/WNL.0000000000004385

    Article  PubMed  PubMed Central  Google Scholar 

  36. Djurdjevic T, Cunha A, Schulz U et al (2019) Endovascular treatment of patients with high-risk symptomatic intracranial vertebrobasilar stenoses: long-term outcomes. Stroke Vasc Neurol 4:182–188. https://doi.org/10.1136/svn-2019-000230

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chang F-C, Luo C-B, Chung C-P et al (2020) Influence of vertebrobasilar stenotic lesion rigidity on the outcome of angioplasty and stenting. Sci Rep 10:3923. https://doi.org/10.1038/s41598-020-60906-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Frink RJ (2002) Calcification: a physiologic defense. Heart Research Foundation

  39. Ehara S, Kobayashi Y, Yoshiyama M et al (2004) Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction: an intravascular ultrasound study. Circulation 110:3424–3429. https://doi.org/10.1161/01.CIR.0000148131.41425.E9

    Article  PubMed  Google Scholar 

  40. Qiao Y, Anwar Z, Intrapiromkul J et al (2016) Patterns and implications of intracranial arterial remodeling in stroke patients. Stroke 47:434–440. https://doi.org/10.1161/STROKEAHA.115.009955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tauth J, Pinnow E, Sullebarger JT et al (1997) Predictors of coronary arterial remodeling patterns in patients with myocardial ischemia. Am J Cardiol 80:1352–1355. https://doi.org/10.1016/S0002-9149(97)00682-6

    Article  CAS  PubMed  Google Scholar 

  42. Sabaté M, Kay IP, de Feyter PJ et al (1999) Remodeling of atherosclerotic coronary arteries varies in relation to location and composition of plaque. Am J Cardiol 84:135–140. https://doi.org/10.1016/s0002-9149(99)00222-2

    Article  PubMed  Google Scholar 

  43. Higuma T, Soeda T, Abe N et al (2015) A combined optical coherence tomography and intravascular ultrasound study on plaque rupture, plaque erosion, and calcified nodule in patients with ST-segment elevation myocardial infarction: incidence, morphologic characteristics, and outcomes after percutaneous coronary intervention. JACC Cardiovasc Interv 8:1166–1176. https://doi.org/10.1016/j.jcin.2015.02.026

    Article  PubMed  Google Scholar 

  44. Yang WJ, Fisher M, Zheng L et al (2017) Histological characteristics of intracranial atherosclerosis in a Chinese population: a postmortem study. Front Neurol 8:488. https://doi.org/10.3389/fneur.2017.00488

    Article  PubMed  PubMed Central  Google Scholar 

  45. Roth W, Morgello S, Goldman J et al (2017) Histopathological differences between the anterior and posterior brain arteries as a function of aging. Stroke 48:638–644. https://doi.org/10.1161/STROKEAHA.116.015630

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Dr Nader Zakhari and Dr Undrakh-Erdene Erdenebold contributed to the study conception and design. Material preparation, and data collection were performed by Dr. Undrakh-Erdene Erdenebold, Dr. Mario Kontolemos, and Dr. William Miller. The first draft of the manuscript was written and data analysis was performed by Dr. Shivaprakash B. Hiremath and supervised by Dr. Nader Zakhari. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nader Zakhari.

Ethics declarations

Ethics approval

The ethics approval was obtained from the institutional Research and Ethics Board (REB: 20190259-01H).

Consent to participate

The consent waiver was obtained from the REB.

Consent for publication

The consent for publication is not needed as per institutional policy.

Conflicts of interest

The authors have no conflicts or competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hiremath, S.B., Erdenebold, UE., Kontolemos, M. et al. Association between vascular calcification in intracranial vertebrobasilar circulation and luminal stenosis. Neuroradiology 64, 2285–2293 (2022). https://doi.org/10.1007/s00234-022-02974-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-022-02974-1

Keywords

Navigation