Skip to main content
Log in

Disrupted brain gray matter networks in drug-naïve participants with essential tremor

  • Functional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

To use structural magnetic resonance imaging and graph theory approaches to investigate the topological organization of the brain morphological network based on gray matter in essential tremor, and its potential relation to disease severity.

Methods

In this prospective study conducted from November 2018 to November 2019, 36 participants with essential tremor and 37 matched healthy controls underwent magnetic resonance imaging. Brain networks based on the morphological similarity of gray matter across regions were analyzed using graph theory. Nonparametric permutation testing was used to assess group differences in topological metrics. Support vector machine was applied to the gray matter morphological matrices to classify participants with essential tremor vs. healthy controls.

Results

Compared with healthy controls, participants with essential tremor showed increased global efficiency (p < 0.01) and decreased path length (p < 0.01); abnormal nodal properties in frontal, parietal, and cerebellar lobes; and disconnectivity in cerebello-thalamo-cortical network. The abnormal brain nodal centralities (left superior cerebellum gyrus; right caudate nucleus) correlated with clinical measures, both motor (Fahn–Tolosa–Marìn tremor rating, p = 0.017, r = − 0.41) and nonmotor (Hamilton depression scale, p = 0.040, r = − 0.36; Hamilton anxiety scale, p = 0.008, r = − 0.436). Gray matter morphological matrices classified individuals with high accuracy of 80.0%.

Conclusion

Participants with essential tremor showed randomization in global properties and dysconnectivity in the cerebello-thalamo-cortical network. Participants with essential tremor could be distinguished from healthy controls by gray matter morphological matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Malkki H (2016) Movement disorders: novel genetic risk variants for essential tremor. Nat Rev Neurol 12(12):679

    PubMed  Google Scholar 

  2. Hopfner F, Ahlf A, Lorenz D, Klebe S, Zeuner KE, Kuhlenbaumer G, Deuschl G (2016) Early- and late-onset essential tremor patients represent clinically distinct subgroups. Mov Disord 31(10):1560–1566

    Article  PubMed  Google Scholar 

  3. Benito-Leon J, Louis ED (2006) Essential tremor: emerging views of a common disorder. Nat Clin Pract Neurol 2(12):666–678

    Article  PubMed  Google Scholar 

  4. Benito-Leon J, Sanz-Morales E, Melero H, Louis ED, Romero JP, Rocon E, Malpica N (2019) Graph theory analysis of resting-state functional magnetic resonance imaging in essential tremor. Hum Brain Mapp 40(16):4686–4702

    Article  PubMed  PubMed Central  Google Scholar 

  5. Benito-Leon J, Alvarez-Linera J, Hernandez-Tamames JA, Alonso-Navarro H, Jimenez-Jimenez FJ, Louis ED (2009) Brain structural changes in essential tremor: voxel-based morphometry at 3-Tesla. J Neurol Sci 287(1-2):138–142

    Article  PubMed  Google Scholar 

  6. Buijink AW, van der Stouwe AM, Broersma M, Sharifi S, Groot PF, Speelman JD, Maurits NM, van Rootselaar AF (2015) Motor network disruption in essential tremor: a functional and effective connectivity study. Brain 138(Pt 10):2934–2947

    Article  PubMed  Google Scholar 

  7. Gong Q (2020) Psychoradiology. Neuroimaging Clinics of North America. Elsevier Inc, New York

  8. Suo X, Lei D, Li N, Cheng L, Chen F, Wang M, Kemp GJ, Peng R, Gong Q (2017) Functional brain connectome and its relation to Hoehn and Yahr stage in Parkinson disease. Radiology 285(3):904–913

    Article  PubMed  Google Scholar 

  9. Port JD (2018) Diagnosis of attention deficit hyperactivity disorder by using MR imaging and radiomics: a potential tool for clinicians. Radiology 287(2):631–2

  10. Sun H, Chen Y, Huang Q, Lui S, Huang X, Shi Y, Xu X, Sweeney JA, Gong Q (2018) Psychoradiologic Utility of MR Imaging for Diagnosis of Attention Deficit Hyperactivity Disorder: A Radiomics Analysis. Radiology 287(2):620–630

  11. He Y, Chen ZJ, Evans AC (2007) Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex 17(10):2407–2419

    Article  PubMed  Google Scholar 

  12. Wang H, Jin X, Zhang Y, Wang J (2016) Single-subject morphological brain networks: connectivity mapping, topological characterization and test-retest reliability. Brain Behav 6(4):e00448

    Article  PubMed  PubMed Central  Google Scholar 

  13. Van Essen DC (1997) A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385(6614):313–318

    Article  PubMed  Google Scholar 

  14. Hilgetag CC, Barbas H (2005) Developmental mechanics of the primate cerebral cortex. Anat Embryol (Berl) 210(5-6):411–417

    Article  Google Scholar 

  15. Alexander-Bloch A, Giedd JN, Bullmore E (2013) Imaging structural co-variance between human brain regions. Nat Rev Neurosci 14(5):322–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Evans AC (2013) Networks of anatomical covariance. Neuroimage 80:489–504

    Article  CAS  PubMed  Google Scholar 

  17. Kong XZ, Liu Z, Huang L, Wang X, Yang Z, Zhou G, Zhen Z, Liu J (2015) Mapping individual brain networks using statistical similarity in regional morphology from MRI. PLoS One 10(11):e0141840

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Kong XZ, Wang X, Huang L, Pu Y, Yang Z, Dang X, Zhen Z, Liu J (2014) Measuring individual morphological relationship of cortical regions. J Neurosci Methods 237:103–107

    Article  PubMed  Google Scholar 

  19. Homan P, Argyelan M, DeRosse P, Szeszko PR, Gallego JA, Hanna L, Robinson DG, Kane JM, Lencz T, Malhotra AK (2019) Structural similarity networks predict clinical outcome in early-phase psychosis. Neuropsychopharmacology 44(5):915–922

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li X, Lei D, Niu R, Li L, Suo X, Li W, Yang C, Yang T, Ren J, Pinaya WHL, Zhou D, Kemp GJ, Gong Q (2020) Disruption of gray matter morphological networks in patients with paroxysmal kinesigenic dyskinesia. Hum Brain Mapp 42(2):398–411

  21. Benito-Leon J, Louis ED, Romero JP, Hernandez-Tamames JA, Manzanedo E, Alvarez-Linera J, Bermejo-Pareja F, Posada I, Rocon E (2015) Altered functional connectivity in essential tremor: a resting-state fMRI study. Medicine (Baltimore) 94(49):e1936

    Article  Google Scholar 

  22. Chen T, Kendrick KM, Wang J, Wu M, Li K, Huang X, Luo Y, Lui S, Sweeney JA, Gong Q (2017) Anomalous single-subject based morphological cortical networks in drug-naive, first-episode major depressive disorder. Hum Brain Mapp 38(5):2482–2494

    Article  PubMed  PubMed Central  Google Scholar 

  23. Deuschl G, Bain P, Brin M, Ad Hoc Sci C (1998) Consensus statement of the Movement Disorder Society on tremor. Mov Disord 13:2–23

    Article  PubMed  Google Scholar 

  24. Koller WC (1990) Parkinson’s disease and movement disorders, Edited by J. Jankwic and E. Tolosa Baltimore, Urban and Schwarzenberg, 1988 499 pp, illustrated. 27 (4):452–453

  25. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H (2005) The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 53(4):695–699

    Article  PubMed  Google Scholar 

  26. Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26(3):839–851

    Article  PubMed  Google Scholar 

  27. Wen W, Zhu W, He Y, Kochan NA, Reppermund S, Slavin MJ, Brodaty H, Crawford J, Xia A, Sachdev P (2011) Discrete neuroanatomical networks are associated with specific cognitive abilities in old age. J Neurosci 31(4):1204–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440–442

    Article  CAS  PubMed  Google Scholar 

  29. Wang J, Wang X, Xia M, Liao X, Evans A, He Y (2015) GRETNA: a graph theoretical network analysis toolbox for imaging connectomics. Front Hum Neurosci 9:386

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang W, Lei D, Keedy SK, Ivleva EI, Eum S, Yao L, Tamminga CA, Clementz BA, Keshavan MS, Pearlson GD, Gershon ES, Bishop JR, Gong Q, Lui S, Sweeney JA (2020) Brain gray matter network organization in psychotic disorders. Neuropsychopharmacology 45(4):666–674

    Article  PubMed  Google Scholar 

  31. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–69

  32. Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87(19):198701

    Article  CAS  PubMed  Google Scholar 

  33. Filippi M, van den Heuvel MP, Fornito A, He Y, Hulshoff Pol HE, Agosta F, Comi G, Rocca MA (2013) Assessment of system dysfunction in the brain through MRI-based connectomics. Lancet Neurol 12(12):1189–1199

    Article  PubMed  Google Scholar 

  34. Achard S, Bullmore E (2007) Efficiency and cost of economical brain functional networks. PLoS Comput Biol 3(2):e17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Zalesky A, Fornito A, Bullmore ET (2010) Network-based statistic: identifying differences in brain networks. Neuroimage 53(4):1197–1207

    Article  PubMed  Google Scholar 

  36. He Y, Dagher A, Chen Z, Charil A, Zijdenbos A, Worsley K, Evans A (2009) Impaired small-world efficiency in structural cortical networks in multiple sclerosis associated with white matter lesion load. Brain 132(Pt 12):3366–3379

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang J, Wang J, Wu Q, Kuang W, Huang X, He Y, Gong Q (2011) Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder. Biol Psychiatry 70(4):334–342

    Article  PubMed  Google Scholar 

  38. Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15(4):870–878

    Article  PubMed  Google Scholar 

  39. Chang CC, Lin CJ (2011) LIBSVM: A library for support vector machines. ACM Trans Intell Syst Technol 2(3):1–27

    Article  Google Scholar 

  40. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V (2012) Scikit-learn: machine learning in Python. J Mach Learn Res 12(10):2825–2830

    Google Scholar 

  41. Tijms BM, Moller C, Vrenken H, Wink AM, de Haan W, van der Flier WM, Stam CJ, Scheltens P, Barkhof F (2013) Single-subject grey matter graphs in Alzheimer’s disease. PLoS One 8(3):e58921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Niu R, Lei D, Chen F, Chen Y, Suo X, Li L, Lui S, Huang X, Sweeney JA, Gong Q (2018) Reduced local segregation of single-subject gray matter networks in adult PTSD. Hum Brain Mapp 39(12):4884–4892

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lenka A, Bhalsing KS, Panda R, Jhunjhunwala K, Naduthota RM, Saini J, Bharath RD, Yadav R, Pal PK (2017) Role of altered cerebello-thalamo-cortical network in the neurobiology of essential tremor. Neuroradiology 59(2):157–168

    Article  PubMed  Google Scholar 

  44. Louis ED (2016) De Sedibus et causis morborum: is essential tremor a primary disease of the cerebellum? Cerebellum 15(3):233–234

    Article  PubMed  Google Scholar 

  45. Louis ED, Rabinowitz D, Choe M, Tate WJ, Kelly GC, Kuo SH, Faust PL (2016) Mapping Purkinje cell placement along the purkinje cell layer: an analysis of postmortem tissue from essential tremor patients vs. controls. Cerebellum 15(6):726–731

    Article  PubMed  PubMed Central  Google Scholar 

  46. Fang W, Chen H, Wang H, Zhang H, Puneet M, Liu M, Lv F, Luo T, Cheng O, Wang X, Lu X (2016) Essential tremor is associated with disruption of functional connectivity in the ventral intermediate Nucleus--Motor Cortex--Cerebellum circuit. Hum Brain Mapp 37(1):165–178

    Article  PubMed  Google Scholar 

  47. Louis ED, Huang CC, Dyke JP, Long Z, Dydak U (2014) Neuroimaging studies of essential tremor: how well do these studies support/refute the neurodegenerative hypothesis? Tremor Other Hyperkinet Mov (N Y) 4:235

    Article  Google Scholar 

  48. Stolze H, Petersen G, Raethjen J, Wenzelburger R, Deuschl G (2001) The gait disorder of advanced essential tremor. Brain 124(Pt 11):2278–2286

    Article  CAS  PubMed  Google Scholar 

  49. Price JL, Drevets WC (2012) Neural circuits underlying the pathophysiology of mood disorders. Trends Cogn Sci 16(1):61–71

    Article  PubMed  Google Scholar 

  50. Vriend C, Raijmakers P, Veltman DJ, van Dijk KD, van der Werf YD, Foncke EM, Smit JH, Berendse HW, van den Heuvel OA (2014) Depressive symptoms in Parkinson’s disease are related to reduced [123I]FP-CIT binding in the caudate nucleus. J Neurol Neurosurg Psychiatry 85(2):159–164

    Article  PubMed  Google Scholar 

  51. Kim MJ, Hamilton JP, Gotlib IH (2008) Reduced caudate gray matter volume in women with major depressive disorder. Psychiatry Res 164(2):114–122

    Article  PubMed  PubMed Central  Google Scholar 

  52. Louis ED, Benito-León J, Bermejo-Pareja F (2007) Self-reported depression and anti-depressant medication use in essential tremor: cross-sectional and prospective analyses in a population-based study. Eur J Neurol 14(10):1138–1146

    Article  CAS  PubMed  Google Scholar 

  53. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198

    Article  CAS  PubMed  Google Scholar 

  54. Lei D, Pinaya WHL, van Amelsvoort T, Marcelis M, Donohoe G, Mothersill DO, Corvin A, Gill M, Vieira S, Huang X, Lui S, Scarpazza C, Young J, Arango C, Bullmore E, Gong Q, McGuire P, Mechelli A (2019) Detecting schizophrenia at the level of the individual: relative diagnostic value of whole-brain images, connectome-wide functional connectivity and graph-based metrics. Psychol Med 50(11):1852–1861

  55. Camchong J, MacDonald AW 3rd, Bell C, Mueller BA, Lim KO (2011) Altered functional and anatomical connectivity in schizophrenia. Schizophr Bull 37(3):640–650

    Article  PubMed  Google Scholar 

  56. Passamonti L, Cerasa A, Quattrone A (2012) Neuroimaging of essential tremor: what is the evidence for cerebellar involvement? Tremor Other Hyperkinet Mov (NY) 2:02–67–421–3. https://doi.org/10.7916/D8F76B8G

  57. Mechelli A, Prata D, Kefford C, Kapur S (2015) Predicting clinical response in people at ultra-high risk of psychosis: a systematic and quantitative review. Drug Discov Today 20(8):924–927

    Article  PubMed  Google Scholar 

  58. Wong A, Xiong YY, Kwan PW, Chan AY, Lam WW, Wang K, Chu WC, Nyenhuis DL, Nasreddine Z, Wong LK, Mok VC (2009) The validity, reliability and clinical utility of the Hong Kong Montreal Cognitive Assessment (HK-MoCA) in patients with cerebral small vessel disease. Dement Geriatr Cogn Disord 28(1):81–87

    Article  PubMed  Google Scholar 

  59. Nasreddine ZS, Phillips N, Chertkow H (2012) Normative data for the Montreal Cognitive Assessment (MoCA) in a population-based sample. Neurology 78(10):765–766

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the families who participated in this study.

Funding

This study was funded by the National Natural Science Foundation of China (Grant Nos. 81621003, 82027808) and the Functional and Molecular Imaging Key Laboratory of Sichuan Province (FMIKLSP, Grant: 2019JDS0044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiyong Gong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 409 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Lei, D., Peng, J. et al. Disrupted brain gray matter networks in drug-naïve participants with essential tremor. Neuroradiology 63, 1501–1510 (2021). https://doi.org/10.1007/s00234-021-02653-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-021-02653-7

Keywords

Navigation