Skip to main content

Advertisement

Log in

Conventional magnetic resonance imaging–based radiomic signature predicts telomerase reverse transcriptase promoter mutation status in grade II and III gliomas

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

Telomerase reverse transcriptase (TERT) promoter mutation status is an important biomarker for the precision diagnosis and prognosis prediction of lower grade glioma (LGG). This study aimed to construct a radiomic signature to noninvasively predict the TERT promoter status in LGGs.

Methods

Eighty-three local patients with pathology-confirmed LGG were retrospectively included as a training cohort, and 33 patients from The Cancer Imaging Archive (TCIA) were used as for independent validation. Three types of regions of interest (ROIs), which covered the tumor, peri-tumoral area, and tumor plus peri-tumoral area, were delineated on three-dimensional contrast-enhanced T1 (3D-CE-T1)-weighted and T2-weighted images. One hundred seven shape, first-order, and texture radiomic features from each modality under each ROI were extracted and selected through least absolute shrinkage and selection operator. Radiomic signatures were constructed with multiple classifiers and evaluated using receiver operating characteristic (ROC) analysis. The tumors were also stratified according to IDH status.

Results

Three radiomic signatures, namely, tumoral radiomic signature, tumoral plus peri-tumoral radiomic signature, and fusion radiomic signature, were built, all of which exhibited good accuracy and balanced sensitivity and specificity. The tumoral signature displayed the best performance, with area under the ROC curves (AUC) of 0.948 (0.903–0.993) in the training cohort and 0.827 (0.667–0.988) in the validation cohort. In the IDH subgroups, the AUCs of the tumoral signature ranged from 0.750 to 0.940.

Conclusion

The MRI-based radiomic signature is reliable for noninvasive evaluation of TERT promoter mutations in LGG regardless of the IDH status. The inclusion of peri-tumoral area did not significantly improve the performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lapointe S, Perry A, Butowski NA (2018) Primary brain tumours in adults. Lancet 392(10145):432–446. https://doi.org/10.1016/s0140-6736(18)30990-5

    Article  PubMed  Google Scholar 

  2. Arita H, Narita Y, Takami H, Fukushima S, Matsushita Y, Yoshida A, Miyakita Y, Ohno M, Shibui S, Ichimura K (2013) TERT promoter mutations rather than methylation are the main mechanism for TERT upregulation in adult gliomas. Acta Neuropathol 126(6):939–941. https://doi.org/10.1007/s00401-013-1203-9

    Article  PubMed  Google Scholar 

  3. Eckel-Passow JE, Lachance DH, Molinaro AM, Walsh KM, Decker PA, Sicotte H, Pekmezci M, Rice T, Kosel ML, Smirnov IV, Sarkar G, Caron AA, Kollmeyer TM, Praska CE, Chada AR, Halder C, Hansen HM, McCoy L, Bracci PM, Marshall R, Zheng S, Reis GF, Pico AR, O'Neill BP, Buckner JC, Giannini C, Huse JT, Perry A, Tihan T, Berger MS, Chang SM, Prados MD, Wiemels J, Wiencke JK, Wrensch MR, Jenkins RB (2015) Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 372(26):2499–2508. https://doi.org/10.1056/NEJMoa1407279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yang P, Cai J, Yan W, Zhang W, Wang Y, Chen B, Li G, Li S, Wu C, Yao K, Li W, Peng X, You Y, Chen L, Jiang C, Qiu X, Jiang T, CGGA project (2016) Classification based on mutations of TERT promoter and IDH characterizes subtypes in grade II/III gliomas. Neuro-oncology 18(8):1099–1108. https://doi.org/10.1093/neuonc/now021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tefferi A, Lasho TL, Begna KH, Patnaik MM, Zblewski DL, Finke CM et al (2015) A pilot study of the telomerase inhibitor imetelstat for myelofibrosis. N Engl J Med 373(10):908–919. https://doi.org/10.1056/NEJMoa1310523

    Article  CAS  PubMed  Google Scholar 

  6. Ersoy TF, Keil VC, Hadizadeh DR, Gielen GH, Fimmers R, Waha A, Heidenreich B, Kumar R, Schild HH, Simon M (2017) New prognostic factor telomerase reverse transcriptase promotor mutation presents without MR imaging biomarkers in primary glioblastoma. Neuroradiology 59(12):1223–1231. https://doi.org/10.1007/s00234-017-1920-1

    Article  PubMed  Google Scholar 

  7. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, Sanduleanu S, Larue RTHM, Even AJG, Jochems A, van Wijk Y, Woodruff H, van Soest J, Lustberg T, Roelofs E, van Elmpt W, Dekker A, Mottaghy FM, Wildberger JE, Walsh S (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14(12):749–762. https://doi.org/10.1038/nrclinonc.2017.141

    Article  PubMed  Google Scholar 

  8. Hwan-Ho C, Hyunjin P (2017) Classification of low-grade and high-grade glioma using multi-modal image radiomics features. Conf Proc Ann Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Ann Conf 2017:3081–3084. https://doi.org/10.1109/embc.2017.8037508

    Article  Google Scholar 

  9. De Looze C, Beausang A, Cryan J, Loftus T, Buckley PG, Farrell M et al (2018) Machine learning: a useful radiological adjunct in determination of a newly diagnosed glioma’s grade and IDH status. J Neuro-Oncol 139(2):491–499. https://doi.org/10.1007/s11060-018-2895-4

    Article  Google Scholar 

  10. Yu J, Shi Z, Lian Y, Li Z, Liu T, Gao Y, Wang Y, Chen L, Mao Y (2017) Noninvasive IDH1 mutation estimation based on a quantitative radiomics approach for grade II glioma. Eur Radiol 27(8):3509–3522. https://doi.org/10.1007/s00330-016-4653-3

    Article  PubMed  Google Scholar 

  11. Arita H, Kinoshita M, Kawaguchi A, Takahashi M, Narita Y, Terakawa Y, Tsuyuguchi N, Okita Y, Nonaka M, Moriuchi S, Takagaki M, Fujimoto Y, Fukai J, Izumoto S, Ishibashi K, Nakajima Y, Shofuda T, Kanematsu D, Yoshioka E, Kodama Y, Mano M, Mori K, Ichimura K, Kanemura Y (2018) Lesion location implemented magnetic resonance imaging radiomics for predicting IDH and TERT promoter mutations in grade II/III gliomas. Scientific reports 8. doi:https://doi.org/10.1038/s41598-018-30273-4

  12. Grossmann P, Gutman DA, Dunn WD Jr, Holder CA, Aerts HJ (2016) Imaging-genomics reveals driving pathways of MRI derived volumetric tumor phenotype features in glioblastoma. BMC Cancer 16:611. https://doi.org/10.1186/s12885-016-2659-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li ZC, Bai H, Sun Q, Li Q, Liu L, Zou Y et al (2018) Multiregional radiomics features from multiparametric MRI for prediction of MGMT methylation status in glioblastoma multiforme: a multicentre study. Eur Radiol 28(9):3640–3650. https://doi.org/10.1007/s00330-017-5302-1

    Article  PubMed  Google Scholar 

  14. Liu Z, Wang Y, Liu X, Du Y, Tang Z, Wang K et al (2018) Radiomics analysis allows for precise prediction of epilepsy in patients with low-grade gliomas. NeuroImage Clin 19:271–278. https://doi.org/10.1016/j.nicl.2018.04.024

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhou H, Vallières M, Bai HX, Su C, Tang H, Oldridge D, Zhang Z, Xiao B, Liao W, Tao Y, Zhou J, Zhang P, Yang L (2017) MRI features predict survival and molecular markers in diffuse lower-grade gliomas. Neuro-oncology 19(6):862–870. https://doi.org/10.1093/neuonc/now256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kickingereder P, Neuberger U, Bonekamp D, Piechotta PL, Gotz M, Wick A et al (2018) Radiomic subtyping improves disease stratification beyond key molecular, clinical, and standard imaging characteristics in patients with glioblastoma. Neuro-Oncol 20(6):848–857. https://doi.org/10.1093/neuonc/nox188

    Article  CAS  PubMed  Google Scholar 

  17. Fan X, Wang Y, Liu Y, Liu X, Zhang C, Wang L, Li S, Ma J, Jiang T (2016) Brain regions associated with telomerase reverse transcriptase promoter mutations in primary glioblastomas. J Neuro-Oncol 128(3):455–462. https://doi.org/10.1007/s11060-016-2132-y

    Article  CAS  Google Scholar 

  18. Yamashita K, Hatae R, Hiwatashi A, Togao O, Kikuchi K, Momosaka D et al (2019) Predicting TERT promoter mutation using MR images in patients with wild-type IDH1 glioblastoma. Diagn Interv Imaging. https://doi.org/10.1016/j.diii.2019.02.010

  19. Suh HB, Choi YS, Bae S, Ahn SS, Chang JH, Kang S-G, Kim EH, Kim SH, Lee SK (2018) Primary central nervous system lymphoma and atypical glioblastoma: differentiation using radiomics approach. Eur Radiol 28(9):3832–3839

    Article  PubMed  Google Scholar 

  20. Kickingereder P, Wiestler B, Sahm F, Heiland S, Roethke M, Schlemmer H-P, Wick W, Bendszus M, Radbruch A (2014) Primary central nervous system lymphoma and atypical glioblastoma: multiparametric differentiation by using diffusion-, perfusion-, and susceptibility-weighted MR imaging. Radiology 272(3):843–850

    Article  PubMed  Google Scholar 

  21. Chan AK, Yao Y, Zhang Z, Chung NY, Liu JS, Li KK et al (2015) TERT promoter mutations contribute to subset prognostication of lower-grade gliomas. Mod Pathol Off J U S Canadian Acad Pathol Inc 28(2):177–186. https://doi.org/10.1038/modpathol.2014.94

    Article  CAS  Google Scholar 

  22. Horbinski C, Kofler J, Kelly LM, Murdoch GH, Nikiforova MN (2009) Diagnostic use of IDH1/2 mutation analysis in routine clinical testing of formalin-fixed, paraffin-embedded glioma tissues. J Neuropathol Exp Neurol 68(12):1319–1325. https://doi.org/10.1097/NEN.0b013e3181c391be

    Article  CAS  PubMed  Google Scholar 

  23. Duffau H, Taillandier L (2015) New concepts in the management of diffuse low-grade glioma: proposal of a multistage and individualized therapeutic approach. Neuro-Oncol 17(3):332–342. https://doi.org/10.1093/neuonc/nou153

    Article  CAS  PubMed  Google Scholar 

  24. Suchorska B, Weller M, Tabatabai G, Senft C, Hau P, Sabel MC, Herrlinger U, Ketter R, Schlegel U, Marosi C, Reifenberger G, Wick W, Tonn JC, Wirsching HG (2016) Complete resection of contrast-enhancing tumor volume is associated with improved survival in recurrent glioblastoma-results from the DIRECTOR trial. Neuro-Oncol 18(4):549–556. https://doi.org/10.1093/neuonc/nov326

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM (2012) Fsl. NeuroImage 62(2):782–790. https://doi.org/10.1016/j.neuroimage.2011.09.015

    Article  PubMed  Google Scholar 

  26. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23(Suppl 1):S208–S219. https://doi.org/10.1016/j.neuroimage.2004.07.051

    Article  PubMed  Google Scholar 

  27. Woolrich MW, Jbabdi S, Patenaude B, Chappell M, Makni S, Behrens T, Beckmann C, Jenkinson M, Smith SM (2009) Bayesian analysis of neuroimaging data in FSL. NeuroImage 45(1 Suppl):S173–S186. https://doi.org/10.1016/j.neuroimage.2008.10.055

    Article  PubMed  Google Scholar 

  28. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RGH, Fillion-Robin JC, Pieper S, Aerts HJWL (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77(21):e104–e107. https://doi.org/10.1158/0008-5472.can-17-0339

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tang J, Alelyani S, Liu H (2014) Feature selection for classification: a review. Data classification: algorithms and applications:37

  30. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830

    Google Scholar 

  31. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44(3):837–845

    Article  CAS  PubMed  Google Scholar 

  32. Vittinghoff E, McCulloch CE (2007) Relaxing the rule of ten events per variable in logistic and cox regression. Am J Epidemiol 165(6):710–718. https://doi.org/10.1093/aje/kwk052

    Article  PubMed  Google Scholar 

  33. Nonoguchi N, Ohta T, Oh JE, Kim YH, Kleihues P, Ohgaki H (2013) TERT promoter mutations in primary and secondary glioblastomas. Acta Neuropathol 126(6):931–937. https://doi.org/10.1007/s00401-013-1163-0

    Article  CAS  PubMed  Google Scholar 

  34. Brat DJ, Verhaak RG, Aldape KD, Yung WK, Salama SR, Cooper LA et al (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 372(26):2481–2498. https://doi.org/10.1056/NEJMoa1402121

    Article  CAS  PubMed  Google Scholar 

  35. Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama SR, Murray BA, Morozova O, Newton Y, Radenbaugh A, Pagnotta SM, Anjum S, Wang J, Manyam G, Zoppoli P, Ling S, Rao AA, Grifford M, Cherniack AD, Zhang H, Poisson L, Carlotti CG Jr, Tirapelli DP, Rao A, Mikkelsen T, Lau CC, Yung WK, Rabadan R, Huse J, Brat DJ, Lehman NL, Barnholtz-Sloan JS, Zheng S, Hess K, Rao G, Meyerson M, Beroukhim R, Cooper L, Akbani R, Wrensch M, Haussler D, Aldape KD, Laird PW, Gutmann DH, TCGA Research Network, Noushmehr H, Iavarone A, Verhaak RG (2016) Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 164(3):550–563. https://doi.org/10.1016/j.cell.2015.12.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Diplas BH, He X, Brosnan-Cashman JA, Liu H, Chen LH, Wang Z, Moure CJ, Killela PJ, Loriaux DB, Lipp ES, Greer PK, Yang R, Rizzo AJ, Rodriguez FJ, Friedman AH, Friedman HS, Wang S, He Y, McLendon R, Bigner DD, Jiao Y, Waitkus MS, Meeker AK, Yan H (2018) The genomic landscape of TERT promoter wildtype-IDH wildtype glioblastoma. Nat Commun 9(1):2087. https://doi.org/10.1038/s41467-018-04448-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li Y, Liu X, Qian Z, Sun Z, Xu K, Wang K, Fan X, Zhang Z, Li S, Wang Y, Jiang T (2018) Genotype prediction of ATRX mutation in lower-grade gliomas using an MRI radiomics signature. Eur Radiol 28(7):2960–2968. https://doi.org/10.1007/s00330-017-5267-0

    Article  PubMed  Google Scholar 

  38. Ren Y, Zhang X, Rui W, Pang H, Qiu T, Wang J, Xie Q, Jin T, Zhang H, Chen H, Zhang Y, Lu H, Yao Z, Zhang J, Feng X (2019) Noninvasive prediction of IDH1 mutation and ATRX expression loss in low-grade gliomas using multiparametric MR radiomic features. Journal of magnetic resonance imaging : JMRI 49(3):808–817. https://doi.org/10.1002/jmri.26240

    Article  PubMed  Google Scholar 

  39. Chen B, Wang H, Ge P, Zhao J, Li W, Gu H, Wang G, Luo Y, Chen D (2012) Gross total resection of glioma with the intraoperative fluorescence-guidance of fluorescein sodium. Int J Med Sci 9(8):708–714. https://doi.org/10.7150/ijms.4843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Verburg N, Baayen JC, Idema S, Klitsie MA, Claus S, de Jonge CS et al (2016) In vivo accuracy of a frameless stereotactic drilling technique for diagnostic biopsies and stereoelectroencephalography depth electrodes. World Neurosurg 87:392–398. https://doi.org/10.1016/j.wneu.2015.11.041

    Article  PubMed  Google Scholar 

  41. Wolpert F, Lareida A, Terziev R, Grossenbacher B, Neidert MC, Roth P et al (2019) Risk factors for the development of epilepsy in patients with brain metastasis. Neuro-Oncology. https://doi.org/10.1093/neuonc/noz172

  42. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  43. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ, Friedman H, Friedman A, Reardon D, Herndon J, Kinzler KW, Velculescu VE, Vogelstein B, Bigner DD (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360(8):765–773. https://doi.org/10.1056/NEJMoa0808710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Buckner JC, Shaw EG, Pugh SL, Chakravarti A, Gilbert MR, Barger GR et al (2016) Radiation plus procarbazine, CCNU, and vincristine in low-grade glioma. N Engl J Med 374(14):1344–1355. https://doi.org/10.1056/NEJMoa1500925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mellinghoff IK, Cloughesy TF, Wen PY, Taylor JW, Maher EA, Arrillaga I et al. (2019) A phase I, open label, perioperative study of AG-120 and AG-881 in recurrent IDH1 mutant, low-grade glioma: results from cohort 1. American Society of Clinical Oncology

  46. Brat DJ, Aldape K, Colman H, Holland EC, Louis DN, Jenkins RB, Kleinschmidt-DeMasters B, Perry A, Reifenberger G, Stupp R, von Deimling A, Weller M (2018) cIMPACT-NOW update 3: recommended diagnostic criteria for “diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV”. Acta Neuropathol 136(5):805–810. https://doi.org/10.1007/s00401-018-1913-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ivanidze J, Lum M, Pisapia D, Magge R, Ramakrishna R, Kovanlikaya I, Fine HA, Chiang GC (2019) MRI features associated with TERT promoter mutation status in glioblastoma. J Neuroimaging Off J Am Soc Neuroimaging 29(3):357–363. https://doi.org/10.1111/jon.12596

    Article  Google Scholar 

Download references

Funding

This study was funded by the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences (Grant number 2016-I2M-2-001), the Fundamental Research Funds for the Central Universities (Grant number 3332018029), and the National Natural Science Foundation of China (Grant number 81601485).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui You.

Ethics declarations

Conflict of interest

None.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this type of study, formal consent is not required.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 196 kb)

ESM 2

(XLSX 10 kb)

ESM 3

(TIF 481 kb)

ESM 4

(PDF 201 kb)

ESM 5

(PDF 295 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Kong, Z., Zhang, Y. et al. Conventional magnetic resonance imaging–based radiomic signature predicts telomerase reverse transcriptase promoter mutation status in grade II and III gliomas. Neuroradiology 62, 803–813 (2020). https://doi.org/10.1007/s00234-020-02392-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-020-02392-1

Keywords

Navigation