Skip to main content
Log in

Differential diagnosis of parkinsonism by a combined use of diffusion kurtosis imaging and quantitative susceptibility mapping

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

We investigated whether diffusion kurtosis imaging (DKI) and quantitative susceptibility mapping (QSM) could detect pathological changes that occur in Parkinson’s disease (PD), multiple system atrophy with predominant parkinsonism (MSA-P) or predominant cerebellar ataxia (MSA-C), and progressive supranuclear palsy syndrome (PSPS) and thus be used for differential diagnosis that is often difficult.

Methods

Seventy patients (41 with PD, 6 with MSA-P, 7 with MSA-C, 16 with PSPS) and 20 healthy controls were examined using a 3.0 T MRI scanner. From DKI and QSM data, we automatically obtained mean kurtosis (MK), fractional anisotropy (FA), and mean diffusivity (MD) values of the midbrain tegmentum (MBT), pontine crossing tract (PCT), and superior/middle cerebellar peduncles (CPs), which were used to calculate diffusion MBT/PCT ratios (dMPRs) and diffusion superior/middle CP ratios (dCPRs), as well as MS (magnetic susceptibility) values of the anterior/posterior putamen (PUa and PUp) and globus pallidus (GP).

Results

dMPRs of MK were significantly decreased in PSPS and increased in MSA-C compared with the other groups, while dCPRs of MK showed significant differences only between MSA-C and PD, PSPS, or control. MS values were significantly increased in the PUp of MSA-P and in the PUa and GP of PSPS compared with those in PD. The combined use of MK-dMPR and MS-PUp showed sensitivities of 83–100% and specificities of 81–100% for discriminating among the disease groups, respectively.

Conclusion

A quantitative assessment using DKI and QSM analyses, particularly MK-dMPR and MS-PUp values, can readily identify patients with parkinsonism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gilman S, Wenning GK, Low PA, Brooks DJ, Mathias CJ, Trojanowski JQ, Wood NW, Colosimo C, Durr A, Fowler CJ, Kaufmann H, Klockgether T, Lees A, Poewe W, Quinn N, Revesz T, Robertson D, Sandroni P, Seppi K, Vidailhet M (2008) Second consensus statement on the diagnosis of multiple system atrophy. Neurology 71(9):670–676. doi:10.1212/01.wnl.0000324625.00404.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Litvan I, Agid Y, Calne D, Campbell G, Dubois B, Duvoisin RC, Goetz CG, Golbe LI, Grafman J, Growdon JH, Hallett M, Jankovic J, Quinn NP, Tolosa E, Zee DS (1996) Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): report of the NINDS-SPSP international workshop. Neurology 47(1):1–9

    Article  CAS  PubMed  Google Scholar 

  3. Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55(3):181–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hughes AJ, Daniel SE, Ben-Shlomo Y, Lees AJ (2002) The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain 125(Pt 4):861–870

    Article  PubMed  Google Scholar 

  5. Massey LA, Micallef C, Paviour DC, O'Sullivan SS, Ling H, Williams DR, Kallis C, Holton JL, Revesz T, Burn DJ, Yousry T, Lees AJ, Fox NC, Jager HR (2012) Conventional magnetic resonance imaging in confirmed progressive supranuclear palsy and multiple system atrophy. Mov Disord 27(14):1754–1762. doi:10.1002/mds.24968

    Article  PubMed  Google Scholar 

  6. Massey LA, Jager HR, Paviour DC, O'Sullivan SS, Ling H, Williams DR, Kallis C, Holton J, Revesz T, Burn DJ, Yousry T, Lees AJ, Fox NC, Micallef C (2013) The midbrain to pons ratio: a simple and specific MRI sign of progressive supranuclear palsy. Neurology 80(20):1856–1861. doi:10.1212/WNL.0b013e318292a2d2

    Article  PubMed  PubMed Central  Google Scholar 

  7. Quattrone A, Nicoletti G, Messina D, Fera F, Condino F, Pugliese P, Lanza P, Barone P, Morgante L, Zappia M, Aguglia U, Gallo O (2008) MR imaging index for differentiation of progressive supranuclear palsy from Parkinson disease and the Parkinson variant of multiple system atrophy. Radiology 246(1):214–221. doi:10.1148/radiol.2453061703

    Article  PubMed  Google Scholar 

  8. Scherfler C, Gobel G, Muller C, Nocker M, Wenning GK, Schocke M, Poewe W, Seppi K (2016) Diagnostic potential of automated subcortical volume segmentation in atypical parkinsonism. Neurology 86(13):1242–1249. doi:10.1212/WNL.0000000000002518

    Article  PubMed  Google Scholar 

  9. Meijer FJ, Bloem BR, Mahlknecht P, Seppi K, Goraj B (2013) Update on diffusion MRI in Parkinson’s disease and atypical parkinsonism. J Neurol Sci 332(1–2):21–29. doi:10.1016/j.jns.2013.06.032

    Article  PubMed  Google Scholar 

  10. Cochrane CJ, Ebmeier KP (2013) Diffusion tensor imaging in parkinsonian syndromes: a systematic review and meta-analysis. Neurology 80(9):857–864. doi:10.1212/WNL.0b013e318284070c

    Article  PubMed  PubMed Central  Google Scholar 

  11. Meijer FJ, van Rumund A, Tuladhar AM, Aerts MB, Titulaer I, Esselink RA, Bloem BR, Verbeek MM, Goraj B (2015) Conventional 3T brain MRI and diffusion tensor imaging in the diagnostic workup of early stage parkinsonism. Neuroradiology 57(7):655–669. doi:10.1007/s00234-015-1515-7

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tuch DS, Reese TG, Wiegell MR, Makris N, Belliveau JW, Wedeen VJ (2002) High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med 48(4):577–582. doi:10.1002/mrm.10268

    Article  PubMed  Google Scholar 

  13. Planetta PJ, Ofori E, Pasternak O, Burciu RG, Shukla P, DeSimone JC, Okun MS, McFarland NR, Vaillancourt DE (2016) Free-water imaging in Parkinson’s disease and atypical parkinsonism. Brain 139(Pt 2):495–508. doi:10.1093/brain/awv361

    Article  PubMed  Google Scholar 

  14. Jensen JH, Helpern JA (2010) MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR Biomed 23(7):698–710. doi:10.1002/nbm.1518

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wang JJ, Lin WY, Lu CS, Weng YH, Ng SH, Wang CH, Liu HL, Hsieh RH, Wan YL, Wai YY (2011) Parkinson disease: diagnostic utility of diffusion kurtosis imaging. Radiology 261(1):210–217. doi:10.1148/radiol.11102277

    Article  PubMed  Google Scholar 

  16. Ito K, Sasaki M, Ohtsuka C, Yokosawa S, Harada T, Uwano I, Yamashita F, Higuchi S, Terayama Y (2015) Differentiation among parkinsonisms using quantitative diffusion kurtosis imaging. Neuroreport 26(5):267–272. doi:10.1097/WNR.0000000000000341

    Article  CAS  PubMed  Google Scholar 

  17. Haacke EM, Xu Y, Cheng YC, Reichenbach JR (2004) Susceptibility weighted imaging (SWI). Magn Reson Med 52(3):612–618. doi:10.1002/mrm.20198

    Article  PubMed  Google Scholar 

  18. Han YH, Lee JH, Kang BM, Mun CW, Baik SK, Shin YI, Park KH (2013) Topographical differences of brain iron deposition between progressive supranuclear palsy and parkinsonian variant multiple system atrophy. J Neurol Sci 325(1–2):29–35. doi:10.1016/j.jns.2012.11.009

    Article  CAS  PubMed  Google Scholar 

  19. Meijer FJ, van Rumund A, Fasen BA, Titulaer I, Aerts M, Esselink R, Bloem BR, Verbeek MM, Goraj B (2015) Susceptibility-weighted imaging improves the diagnostic accuracy of 3T brain MRI in the work-up of parkinsonism. AJNR Am J Neuroradiol 36(3):454–460. doi:10.3174/ajnr.A4140

    Article  CAS  PubMed  Google Scholar 

  20. Haacke EM, Liu S, Buch S, Zheng W, Wu D, Ye Y (2015) Quantitative susceptibility mapping: current status and future directions. Magn Reson Imaging 33(1):1–25. doi:10.1016/j.mri.2014.09.004

    Article  PubMed  Google Scholar 

  21. Eskreis-Winkler S, Zhang Y, Zhang J, Liu Z, Dimov A, Gupta A, Wang Y (2017) The clinical utility of QSM: disease diagnosis, medical management, and surgical planning. NMR Biomed 30(4). doi:10.1002/nbm.3668

  22. Wang Y, Spincemaille P, Liu Z, Dimov A, Deh K, Li J, Zhang Y, Yao Y, Gillen KM, Wilman AH, Gupta A, Tsiouris AJ, Kovanlikaya I, Chiang GC, Weinsaft JW, Tanenbaum L, Chen W, Zhu W, Chang S, Lou M, Kopell BH, Kaplitt MG, Devos D, Hirai T, Huang X, Korogi Y, Shtilbans A, Jahng GH, Pelletier D, Gauthier SA, Pitt D, Bush AI, Brittenham GM, Prince MR (2017) Clinical quantitative susceptibility mapping (QSM): biometal imaging and its emerging roles in patient care. J Magn Reson Imaging. doi:10.1002/jmri.25693

  23. Yokosawa S, Sasaki M, Bito Y, Ito K, Yamashita F, Goodwin J, Higuchi S, Kudo K (2016) Optimization of scan parameters to reduce acquisition time for diffusion kurtosis imaging at 1.5T. Magn Reson Med Sci 15(1):41–48. doi:10.2463/mrms.2014-0139

    Article  PubMed  Google Scholar 

  24. Ito K, Kudo M, Sasaki M, Saito A, Yamashita F, Harada T, Yokosawa S, Uwano I, Kameda H, Terayama Y (2016) Detection of changes in the periaqueductal gray matter of patients with episodic migraine using quantitative diffusion kurtosis imaging: preliminary findings. Neuroradiology 58(2):115–120. doi:10.1007/s00234-015-1603-8

    Article  PubMed  Google Scholar 

  25. Sato R, Shirai T, Taniguchi Y, Murase T, Bito Y, Ochi H (2017) Quantitative susceptibility mapping using the multiple dipole-inversion combination with k-space segmentation method. Magn Reson Med Sci (in press)

  26. Sun H, Wilman AH (2014) Background field removal using spherical mean value filtering and Tikhonov regularization. Magn Reson Med 71(3):1151–1157. doi:10.1002/mrm.24765

    Article  PubMed  Google Scholar 

  27. Lim IA, Faria AV, Li X, Hsu JT, Airan RD, Mori S, van Zijl PC (2013) Human brain atlas for automated region of interest selection in quantitative susceptibility mapping: application to determine iron content in deep gray matter structures. NeuroImage 82:449–469. doi:10.1016/j.neuroimage.2013.05.127

    Article  PubMed  PubMed Central  Google Scholar 

  28. Oishi K, Faria A, Jiang H, Li X, Akhter K, Zhang J, Hsu JT, Miller MI, van Zijl PC, Albert M, Lyketsos CG, Woods R, Toga AW, Pike GB, Rosa-Neto P, Evans A, Mazziotta J, Mori S (2009) Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: application to normal elderly and Alzheimer’s disease participants. NeuroImage 46(2):486–499

    Article  PubMed  PubMed Central  Google Scholar 

  29. Guglielmetti C, Veraart J, Roelant E, Mai Z, Daans J, Van Audekerke J, Naeyaert M, Vanhoutte G, Delgado YPR, Praet J, Fieremans E, Ponsaerts P, Sijbers J, Van der Linden A, Verhoye M (2016) Diffusion kurtosis imaging probes cortical alterations and white matter pathology following cuprizone induced demyelination and spontaneous remyelination. NeuroImage 125:363–377. doi:10.1016/j.neuroimage.2015.10.052

    Article  CAS  PubMed  Google Scholar 

  30. Steven AJ, Zhuo J, Melhem ER (2014) Diffusion kurtosis imaging: an emerging technique for evaluating the microstructural environment of the brain. AJR Am J Roentgenol 202(1):W26–W33. doi:10.2214/AJR.13.11365

    Article  PubMed  Google Scholar 

  31. Zhuo J, Xu S, Proctor JL, Mullins RJ, Simon JZ, Fiskum G, Gullapalli RP (2012) Diffusion kurtosis as an in vivo imaging marker for reactive astrogliosis in traumatic brain injury. NeuroImage 59(1):467–477. doi:10.1016/j.neuroimage.2011.07.050

    Article  PubMed  Google Scholar 

  32. Assaf Y, Pasternak O (2008) Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci 34(1):51–61. doi:10.1007/s12031-007-0029-0

    Article  CAS  PubMed  Google Scholar 

  33. Tsukamoto K, Matsusue E, Kanasaki Y, Kakite S, Fujii S, Kaminou T, Ogawa T (2012) Significance of apparent diffusion coefficient measurement for the differential diagnosis of multiple system atrophy, progressive supranuclear palsy, and Parkinson’s disease: evaluation by 3.0-T MR imaging. Neuroradiology 54(9):947–955. doi:10.1007/s00234-012-1009-9

    Article  PubMed  Google Scholar 

  34. Wang J, Wai Y, Lin WY, Ng S, Wang CH, Hsieh R, Hsieh C, Chen RS, Lu CS (2010) Microstructural changes in patients with progressive supranuclear palsy: a diffusion tensor imaging study. J Magn Reson Imaging 32(1):69–75. doi:10.1002/jmri.22229

    Article  CAS  PubMed  Google Scholar 

  35. Wenning GK, Tison F, Elliott L, Quinn NP, Daniel SE (1996) Olivopontocerebellar pathology in multiple system atrophy. Mov Disord 11(2):157–162. doi:10.1002/mds.870110207

    Article  CAS  PubMed  Google Scholar 

  36. Dickson DW (2012) Parkinson’s disease and parkinsonism: neuropathology. Cold Spring Harb Perspect Med 2(8). doi:10.1101/cshperspect.a009258

  37. Berg D, Hochstrasser H (2006) Iron metabolism in Parkinsonian syndromes. Mov Disord 21(9):1299–1310. doi:10.1002/mds.21020

    Article  PubMed  Google Scholar 

  38. Matsusue E, Fujii S, Kanasaki Y, Sugihara S, Miyata H, Ohama E, Ogawa T (2008) Putaminal lesion in multiple system atrophy: postmortem MR-pathological correlations. Neuroradiology 50(7):559–567. doi:10.1007/s00234-008-0381-y

    Article  PubMed  Google Scholar 

  39. Perez M, Valpuesta JM, de Garcini EM, Quintana C, Arrasate M, Lopez Carrascosa JL, Rabano A, Garcia de Yebenes J, Avila J (1998) Ferritin is associated with the aberrant tau filaments present in progressive supranuclear palsy. Am J Pathol 152(6):1531–1539

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Li J, Chang S, Liu T, Wang Q, Cui D, Chen X, Jin M, Wang B, Pei M, Wisnieff C, Spincemaille P, Zhang M, Wang Y (2012) Reducing the object orientation dependence of susceptibility effects in gradient echo MRI through quantitative susceptibility mapping. Magn Reson Med 68(5):1563–1569. doi:10.1002/mrm.24135

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tripathi M, Tang CC, Feigin A, De Lucia I, Nazem A, Dhawan V, Eidelberg D (2016) Automated differential diagnosis of early parkinsonism using metabolic brain networks: a validation study. J Nucl Med 57(1):60–66. doi:10.2967/jnumed.115.161992

    Article  CAS  PubMed  Google Scholar 

  42. Holtbernd F, Eidelberg D (2014) The utility of neuroimaging in the differential diagnosis of parkinsonian syndromes. Semin Neurol 34(2):202–209. doi:10.1055/s-0034-1381733

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gong NJ, Wong CS, Hui ES, Chan CC, Leung LM (2015) Hemisphere, gender and age-related effects on iron deposition in deep gray matter revealed by quantitative susceptibility mapping. NMR Biomed 28(10):1267–1274. doi:10.1002/nn3366

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Ito.

Ethics declarations

Funding

This study was partly funded by a Grant-in-Aid (Nanchi-030) from the Ministry of Health, Labor and Welfare of Japan, a Grant-in-Aid for Strategic Medical Science Research (S1491001) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, and JSPS KAKENHI (16K19520, 25861119, 25461325).

Conflict of interest

SY and RS are employees of Hitachi, Ltd. MS has received an honorarium and research grants from Hitachi Medical Corp.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ito, K., Ohtsuka, C., Yoshioka, K. et al. Differential diagnosis of parkinsonism by a combined use of diffusion kurtosis imaging and quantitative susceptibility mapping. Neuroradiology 59, 759–769 (2017). https://doi.org/10.1007/s00234-017-1870-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-017-1870-7

Keywords

Navigation