Skip to main content

Advertisement

Log in

Spinal cord microstructure integrating phase-sensitive inversion recovery and diffusional kurtosis imaging

  • Spinal Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this prospective study was to determine the feasibility in terms of repeatability and reproducibility of diffusional kurtosis imaging (DKI) for microstructural assessment of the normal cervical spinal cord (cSC) using a phase-sensitive inversion recovery (PSIR) sequence as the anatomical reference for accurately defining white-matter (WM) and gray-matter (GM) regions of interests (ROIs).

Methods

Thirteen young healthy subjects were enrolled to undergo DKI and PSIR sequences in the cSC. The repeatability and reproducibility of kurtosis metrics and fractional anisotropy (FA) were calculated in GM, WM, and cerebral-spinal-fluid (CSF) ROIs drawn by two independent readers on PSIR images of three different levels (C1–C4). The presence of statistically significant differences in DKI metrics for levels, ROIs (GM, WM, and CSF) repeatability, reproducibility, and inter-reader agreement was evaluated.

Results

Intra-class correlation coefficients between the two readers ranged from good to excellent (0.75 to 0.90). The inferior level consistently had the highest concordance. The lower values of scan–rescan variability for all DKI parameters were found for the inferior level. Statistically significant differences in kurtosis values were not found in the lateral white-matter bundles of the spinal cord.

Conclusion

The integration of DKI and PSIR sequences in a clinical MR acquisition to explore the regional microstructure of the cSC in healthy subjects is feasible, and the results obtainable are reproducible. Further investigation will be required to verify the possibility to translate this method to a clinical setting to study patients with SC involvement especially in the absence of MRI abnormalities on standard sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Andre JB, Bammer R (2010) Advanced diffusion-weighted magnetic resonance imaging techniques of the human spinal cord. Top Magn Reson Imaging 21(6):367–378. doi:10.1097/RMR.0b013e31823e65a1

    Article  PubMed  PubMed Central  Google Scholar 

  2. Samson RS, Lévy S, Schneider T, Smith AK, Smith SA, Cohen-Adad J, Wheeler-Kingshott CA (2016) ZOOM or non-ZOOM? Assessing spinal cord diffusion tensor imaging protocols for multi-centre studies. PLoS One 11(5):1–14. doi:10.1371/journal.pone.0155557

    Article  Google Scholar 

  3. Lerner A, Mogensen MA, Kim PE, Shiroishi MS, Hwang DH, Law M (2014) Clinical applications of diffusion tensor imaging. World Neurosurg 82(1–2):96–109. doi:10.1016/j.wneu.2013.07.083

    Article  PubMed  Google Scholar 

  4. Raz E, Bester M, Sigmund EE, Tabesh A, Babb JS, Jaggi H, Helpern J, Mitnick RJ, Inglese M (2013) A better characterization of spinal cord damage in multiple sclerosis: a diffusional kurtosis imaging study. Am J Neuroradiol 34(9):1846–1852. doi:10.3174/ajnr.A3512

    Article  CAS  PubMed  Google Scholar 

  5. Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K (2005) Diffusional kurtosis imaging: the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 53(6):1432–1440. doi:10.1002/mrm.20508

    Article  PubMed  Google Scholar 

  6. Conklin CJ, Middleton DM, Alizadeh M, Finsterbusch J, Raunig DL, Faro SH, Shah P, Krisa L, Sinko R, Delalic JZ, Mulcahey MJ, Mohamed FB (2016) Spatially selective 2D RF inner field of view (iFOV) diffusion kurtosis imaging (DKI) of the pediatric spinal cord. NeuroImage Clin 11:61–67. doi:10.1016/j.nicl.2016.01.009

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hori M, Tsutsumi S, Yasumoto Y, Ito M, Suzuki M, Tanaka FS, Kyogoku S, Nakamura M, Tabuchi T, Fukunaga I, Suzuki Y, Kamagata K, Masutani Y, Aoki S (2014) Cervical spondylosis: evaluation of microstructural changes in spinal cord white matter and gray matter by diffusional kurtosis imaging. Magn Reson Imaging 32(5):428–432. doi:10.1016/j.mri.2014.01.018

    Article  PubMed  Google Scholar 

  8. Hou P, Hasan KM, Sitton CW, Wolinsky JS, Narayana PA (2005) Phase-sensitive T1 inversion recovery imaging: a time-efficient interleaved technique for improved tissue contrast in neuroimaging. Am J Neuroradiol 26(6):1432–1438

    PubMed  Google Scholar 

  9. Kearney H, Yiannakas MC, Abdel-Aziz K, Wheeler-Kingshott CA, Altmann DR, Ciccarelli O, Miller DH (2014) Improved MRI quantification of spinal cord atrophy in multiple sclerosis. J Magn Reson Imaging 39(3):617–623. doi:10.1002/jmri.24194

    Article  PubMed  Google Scholar 

  10. Schraa B. (2013) T1-weighted phase sensitive inversion recovery for imaging multiple sclerosis lesions in the cervical SC. Clinical Neurology MAGNETOM Flash | 5/2013

  11. Papinutto N, Schlaeger R, Panara V, Caverzasi E, Ahn S, Johnson KJ, Zhu AH, Stern WA, Laub G, Hauser SL, Henry RG (2015) 2D phase-sensitive inversion recovery imaging to measure in vivo spinal cord gray and white matter areas in clinically feasible acquisition times. J Magn Reson Imaging 42(3):698–708. doi:10.1002/jmri.24819

    Article  PubMed  Google Scholar 

  12. Schlaeger R, Papinutto N, Panara V, Bevan C, Lobach IV, Bucci M, Caverzasi E, Gelfand JM, Green AJ, Jordan KM, Stern WA, von Büdingen HC, Waubant E, Zhu AH, Goodin DS, Cree BA, Hauser SL, Henry RG (2014) Spinal cord gray matter atrophy correlates with multiple sclerosis disability. Ann Neurol 76(4):568–580. doi:10.1002/ana.24241

    Article  PubMed  PubMed Central  Google Scholar 

  13. Schlaeger R, Papinutto N, Zhu AH, Lobach IV, Bevan CJ, Bucci M, Castellano A, Gelfand JM, Graves JS, Green AJ, Jordan KM, Keshavan A, Panara V, Stern WA, von Büdingen HC, Waubant E, Goodin DS, Cree BA, Hauser SL, Henry RG (2015) Association between thoracic spinal cord gray matter atrophy and disability in multiple sclerosis. JAMA Neurol 72(8):897–904. doi:10.1001/jamaneurol.2015.0993

    Article  PubMed  Google Scholar 

  14. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113

    Article  CAS  PubMed  Google Scholar 

  15. Taber KH, Herrick RC, Weathers SW, Kumar AJ, Schomer DF, Hayman LA (1998) Pitfalls and artifacts encountered in clinical MR imaging of the spine. Radiographics 18(6):1499–1521. doi:10.1148/radiographics.18.6.9821197

    Article  CAS  PubMed  Google Scholar 

  16. Coupe P, Yger P, Prima S, Hellier P, Kervrann C, Barillot C (2008) An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans Med Imaging 27(4):425–441. doi:10.1109/TMI.2007.906087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31(3):1116–1128. doi:10.1016/j.neuroimage.2006.01.015

    Article  PubMed  Google Scholar 

  18. Tabesh A, Jensen JH, Ardekani BA, Helpern JA (2011) Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging. Magn Reson Med 65(3):823–836. doi:10.1002/mrm.22655

    Article  PubMed  Google Scholar 

  19. Chang LC, Jones DK, Pierpaoli C (2005) RESTORE: robust estimation of tensors by outlier rejection. Magn Reson Med 53(5):1088–1095. doi:10.1002/mrm.20426

    Article  PubMed  Google Scholar 

  20. Bester M, Jensen JH, Babb JS, Tabesh A, Miles L, Herbert J, Grossman RI, Inglese M (2015) Non-Gaussian diffusion MRI of gray matter is associated with cognitive impairment in multiple sclerosis. Mult Scler 21(7):935–944. doi:10.1177/1352458514556295

    Article  CAS  PubMed  Google Scholar 

  21. Helpern JA, Adisetiyo V, Falangola MF, Hu C, Di Martino A, Williams K, Castellanos FX, Jensen JH (2011) Preliminary evidence of altered gray and white matter microstructural development in the frontal lobe of adolescents with attention-deficit hyperactivity disorder: a diffusional kurtosis imaging study. J Magn Reson Imaging 33(1):17–23. doi:10.1002/jmri.22397

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhu J, Zhuo C, Qin W, Wang D, Ma X, Zhou Y, Yu C (2015) Performances of diffusion kurtosis imaging and diffusion tensor imaging in detecting white matter abnormality in schizophrenia. NeuroImage Clin 7:170–176. doi:10.1016/j.nicl.2014.12.008

    Article  PubMed  Google Scholar 

  23. Woolrich MW, Jbabdi S, Patenaude B, Chappell M, Makni S, Behrens T, Beckmann C, Jenkinson M, Smith SM (2009) Bayesian analysis of neuroimaging data in FSL. NeuroImage 45(1):S173–S186

    Article  PubMed  Google Scholar 

  24. De Leener B, Kadoury S, Cohen-Adad J (2014) Robust, accurate and fast automatic segmentation of the spinal cord. NeuroImage 98:528–536. doi:10.1016/j.neuroimage.2014.04.051

    Article  PubMed  Google Scholar 

  25. Lévy S, Benhamou M, Naaman C, Rainville P, Callot V, Cohen-Adad J (2015) White matter atlas of the human spinal cord with estimation of partial volume effect. NeuroImage 119:262–271. doi:10.1016/j.neuroimage.2015.06.040

    Article  PubMed  Google Scholar 

  26. Stroman PW, Wheeler-Kingshott C, Bacon M, Schwab JM, Bosma R, Brooks J, Cadotte D, Carlstedt T, Ciccarelli O, Cohen-Adad J, Curt A, Evangelou N, Fehlings MG, Filippi M, Kelley BJ, Kollias S, Mackay A, Porro CA, Smith S, Strittmatter SM, Summers P, Tracey I (2014) The current state-of-the-art of spinal cord imaging: methods. NeuroImage 84:1070–1081. doi:10.1016/j.neuroimage.2013.04.124

    Article  CAS  PubMed  Google Scholar 

  27. Wheeler-Kingshott CA, Stroman PW, Schwab JM, Bacon M, Bosma R, Brooks J, Cadotte DW, Carlstedt T, Ciccarelli O, Cohen-Adad J, Curt A, Evangelou N, Fehlings MG, Filippi M, Kelley BJ, Kollias S, Mackay A, Porro CA, Smith S, Strittmatter SM, Summers P, Thompson AJ, Tracey I (2014) The current state-of-the-art of spinal cord imaging: applications. NeuroImage 84:1082–1093. doi:10.1016/j.neuroimage.2013.07.014

    Article  CAS  PubMed  Google Scholar 

  28. Reich DS, Smith SA, Jones CK, Zackowski KM, van Zijl PC, Calabresi PA, Mori S (2006) Quantitative characterization of the corticospinal tract at 3 Tesla. AJNR Am J Neuroradiol 27(10):2168–2178

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Das SK, Wang JL, Bing L, Bhetuwal A, Yang HF (2016) Regional values of diffusional kurtosis estimates in the healthy brain during normal aging. Clin Neuroradiol [Epub ahead of print]. doi:10.1007/s00062-015-0490-z

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Panara.

Ethics declarations

Funding

VP was funded by a grant from the Italian Association of Neuroradiology - AINR.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panara, V., Navarra, R., Mattei, P.A. et al. Spinal cord microstructure integrating phase-sensitive inversion recovery and diffusional kurtosis imaging. Neuroradiology 59, 819–827 (2017). https://doi.org/10.1007/s00234-017-1864-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-017-1864-5

Keywords

Navigation