Skip to main content

Advertisement

Log in

Temporal changes in CT perfusion values before and after cranioplasty in patients without symptoms related to external decompression: a pilot study

  • Functional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Little is known about hemodynamic disturbances affecting cerebral hemispheres in traumatic brain injury (TBI) after cranioplasty.

Methods

We prospectively investigated six stable TBI patients who underwent cranioplasty more than 90 days after effective decompressive craniectomy. Computerized tomography perfusion (CTP) studies and evaluation of clinical outcome were performed for each patient before cranioplasty and at 7 days and 3 months after surgery. Cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) were measured in multiple cortical circular regions positioned in cranioplasty-treated and contralateral hemispheres.

Results

Neither complications associated with cranioplasty nor changes in outcome were observed. On the treated side, CBF and CBV values were higher before and 7 days after cranioplasty than at 3 months after surgery, whereas MTT values were lower at 7 days than at 3 months after surgical treatment.

Conclusions

Our results indicate that cortical perfusion progressively declines in the cranioplasty treated hemisphere but remains stable in the contralateral hemisphere after surgery and suggest that CTP can represent a promising tool for a longitudinal analysis of hemodynamic abnormalities occurring in TBI patients after cranioplasty. In addition, these data imply a possible role of cranioplasty in restoring flow to meet the prevailing metabolic demand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Laidlaw J (2000) Cranioplasty. In: Kaye AH, Black PM (eds) Operative neurosurgery, vol I. Churchill Livingstone, London, England, pp 303–314

    Google Scholar 

  2. Akins PT, Guppy KH (2008) Sinking skin flaps, paradoxical herniation, and external brain tamponade: a review of decompressive craniectomy management. Neurocrit Care 9:269–276

    Article  PubMed  Google Scholar 

  3. Sinclair AG (2010) Scoffings DJ (2010) imaging of the post-operative cranium. Radiographics 30:461–482

    Article  PubMed  Google Scholar 

  4. Chang V, Hartzfeld P, Langlois M, Mahmood A, Seyfried D (2010) Outcomes of cranial repair after craniectomy. J Neurosurg 112:1120–1124

    Article  PubMed  Google Scholar 

  5. Lee C-H, Chung YS, Lee SH, Yang H-J, Son Y-J (2012) Analysis of the factors influencing bone graft infection after cranioplasty. J Trauma Acute Care Surg 73:255–260

    Article  PubMed  Google Scholar 

  6. Wachter D, Reineke K, Behm T, Rohde V (2013) Cranioplasty after decompressive hemicraniectomy: underestimated surgery-associated complications? Clin Neurol Neurosurg 115:1293–1297

    Article  PubMed  Google Scholar 

  7. Beauchamp KM, Kashuk J, Moore EE, Bolles G, Rabb C, Seinfeld J, Szentirmai O, Sauaia A (2010) Cranioplasty after postinjury decompressive craniectomy: is timing of the essence? J Trauma 69:270–274

    Article  PubMed  Google Scholar 

  8. Archavlis E, Nievas MCY (2012) The impact of timing of cranioplasty in patients with large cranial defects after decompressive hemicraniectomy. Acta Neurochir 154:1055–1062

    Article  CAS  PubMed  Google Scholar 

  9. Yadla S, Campbell PG, Chitale R, Maltenfort MG, Jabbour P, Sharan AD (2011) Effect of early surgery, material, and method of flap preservation on cranioplasty infections. A systematic review. Neurosurgery 1124-1130

  10. Gooch MR, Gin GE, Kenning TJ, German JW (2009) Complications of cranioplasty following decompressive craniectomy: analysis of 62 cases. Neurosurg Focus 6:e9

    Article  Google Scholar 

  11. Honeybul S (2010) Complications of decompressive craniectomy for head injury. J Clin Neurosci 17:430–435

    Article  CAS  PubMed  Google Scholar 

  12. De Bonis P, Frassanito P, Mangiola A, Nucci CG, Anile C, Pompucci A (2012) Cranial repair: how complicated is filling a “hole”? J Neurotrauma 2:1071–1076

    Article  Google Scholar 

  13. Schuss P, Vatter H, Marquardt G, Imöhl L, Ulrich CT, Seifert V, Güresir E (2012) Cranioplasty after decompressive craniectomy: the effect of timing on postoperative complications. J Neurotrauma 29:1090–1095

    Article  PubMed  Google Scholar 

  14. Schuss P, Vatter H, Oszvald A, Marquardt G, Imöhl L, Seifert V, Güresir E (2013) Bone flap resorption: risk factors for the development of a long-term complication following cranioplasty after decompressive craniectomy. J Neurotrauma 30:91–95

    Article  PubMed  Google Scholar 

  15. Winkler PA, Stummer W, Linke R, Krishnan KG, Tatsch K (2000) The influence of cranioplasty on postural blood flow regulation, cerebrovascular reserve capacity, and cerebral glucose metabolism. J Neurosurg 93:53–61

    Article  CAS  PubMed  Google Scholar 

  16. Bor-Seng-Shu E, Hirsch R, Teixeira MJ, De Andrade AF, Marino R Jr (2006) Cerebral hemodynamic changes gauged by transcranial Doppler ultrasonography in patients with posttraumatic brain swelling treated by surgical decompression. J Neurosurg 104:93–100

    Article  PubMed  Google Scholar 

  17. Daboussi A, Minville V, Leclerc-Foucras S, Geeraerts T, Esquerré JP, Payoux P, Fourcade O (2009) Cerebral hemodynamic changes in severe head injury patients undergoing decompressive craniectomy. J Neurosurg Anesthesiol 21:339–345

    Article  PubMed  Google Scholar 

  18. Amorim RL, Bor-Seng-Shu E, Gattás GS, Paiva W, Andrade AF, Teixeira MJ (2012) Decompressive craniectomy and cerebral blood flow regulation in head injured patients: a case studied by perfusion CT. J Neuroradiol 39:346–349

    Article  PubMed  Google Scholar 

  19. Suzuki N, Suzuki S, Iwabuchi T (1993) Neurological improvement after cranioplasty. Analysis by dynamic CT scan. Acta Neurochir 122:49–53

    Article  CAS  PubMed  Google Scholar 

  20. Yoshida K, Furuse M, Izawa A, Iizima N, Kuchiwaki H, Inao S (1996) Dynamics of cerebral blood flow and metabolism in patients with cranioplasty as evaluated by 133Xe CT and 31P magnetic resonance spectroscopy. J Neurol Neurosurg Psychiatry 61:166–171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Maekawa M, Awaya S, Teramoto A (1999) Cerebral blood flow (CBF) before and after cranioplasty performed during the chronic stage after decompressive craniectomy evaluated by xenon-enhanced computerized tomography. No Shinkei Geka 27:717–722

    CAS  PubMed  Google Scholar 

  22. Isago T, Nozaki M, Kikuchi Y, Honda T, Nakazawa H (2004) Sinking skin flap syndrome: a case of improved cerebral blood flow after cranioplasty. Ann Plast Surg 53:288–292

    Article  PubMed  Google Scholar 

  23. Maeshima S, Kagawa M, Kishida Y, Kobayashi K, Makabe T, Morita Y, Kunishio K, Matsumoto A, Tsubahara A (2005) Unilateral spatial neglect related to a depressed skin flap following decompressive craniectomy. Eur Neurol 53:164–168

    Article  CAS  PubMed  Google Scholar 

  24. Sakamoto S, Eguchi K, Kiura Y, Arita K, Kurisu K (2006) CT perfusion imaging in the syndrome of the sinking skin flap before and after cranioplasty. Clin Neurol Neurosurg 108:583–585

    Article  PubMed  Google Scholar 

  25. Stiver SI, Wintermark M, Manley GT (2008) Reversible monoparesis following decompressive hemicraniectomy for traumatic brain injury. J Neurosurg 109:245–254

    Article  PubMed  Google Scholar 

  26. Kemmling A, Duning T, Lemcke L, Niederstadt T, Minnerup J, Wersching H, Marziniak M (2010) Case report of MR perfusion imaging in sinking skin flap syndrome: growing evidence for hemodynamic impairment. BMC Neurol 10:80

    Article  PubMed Central  PubMed  Google Scholar 

  27. Chieregato A (2006) The syndrome of the sunken skin flap: a neglected potentially reversible phenomenon affecting recovery after decompressive craniotomy. Intensive Care Med 32:1668–1669

    Article  PubMed  Google Scholar 

  28. Wintermark M, Chioléro R, van Melle G, Revelly JP, Porchet F, Regli L, Meuli R, Schnyder P, Maeder P (2004) Relationship between brain perfusion computed tomography variables and cerebral perfusion pressure in severe head trauma patients. Crit Care Med 32:1579–1587

    Article  PubMed  Google Scholar 

  29. Wintermark M, van Melle G, Schnyder P, Revelly JP, Porchet F, Regli L, Meuli R, Maeder P, Chioléro R (2004) Admission perfusion CT: prognostic value in patients with severe head trauma. Radiology 232:211–220

    Article  PubMed  Google Scholar 

  30. Wintermark M, Chioléro R, van Melle G, Revelly JP, Porchet F, Regli L, Maeder P, Meuli R, Schnyder P (2006) Cerebral vascular autoregulation assessed by perfusion-CT in severe head trauma patients. J Neuroradiol 33:27–37

    Article  CAS  PubMed  Google Scholar 

  31. Soustiel JF, Mahamid E, Goldsher D, Zaaroor M (2008) Perfusion-CT for early assessment of traumatic cerebral contusions. Neuroradiology 50:189–196

    Article  PubMed  Google Scholar 

  32. Metting Z, Rödiger LA, Stewart RE, Oudkerk M, De Keyser J, van der Naalt J (2009) Perfusion computed tomography in the acute phase of mild head injury: regional dysfunction and prognostic value. Ann Neurol 66:809–816

    Article  PubMed  Google Scholar 

  33. Metting Z, Rödiger LA, de Jong BM, Stewart RE, Kremer BP, van der Naalt J (2010) Acute cerebral perfusion CT abnormalities associated with posttraumatic amnesia in mild head injury. J Neurotrauma 27:2183–2189

    Article  PubMed  Google Scholar 

  34. Bendinelli C, Bivard A, Nebauer S, Parsons MW, Balogh ZJ (2013) Brain CT perfusion provides additional useful information in severe traumatic brain injury. Injury 44:1208–1212

    Article  PubMed  Google Scholar 

  35. Teasdale G, Jennet B (1974) Assessment of coma and impaired counsciousness. A practical scale. Lancet 2:81–84

    Article  CAS  PubMed  Google Scholar 

  36. Marshall LF, Bowers Marshall S, Klauber MR, van Berkum CM (1991) A new classification of head injury based on computerized tomography. J Neurosurg 75:S14–S20

    Google Scholar 

  37. Yamaura A, Makino H (1977) Neurological deficits in the presence of the sinking skin flap following decompressive craniectomy. Neurol Med Chir (Tokyo) 17:43–53

    Article  CAS  Google Scholar 

  38. van Swieten JC, Koudstaal PJ, Visser MC, Schouten HJ, van Gijn J (1988) Interobserver agreement for the assessment of handicap in stroke patients. Stroke 19:604–607

    Article  PubMed  Google Scholar 

  39. Jennett B, Bond M (1975) Assessment of outcome after severe brain damage: a practical scale. Lancet 1:480–484

    Article  CAS  PubMed  Google Scholar 

  40. Lee SC, Wu CT, Lee ST, Chen PJ (2009) Cranioplasty using polymethyl methacrylate prostheses. J Clin Neurosci 16:56–63

    Article  CAS  PubMed  Google Scholar 

  41. Powers WJ (1991) Cerebral hemodynamics in ischemic cerebrovascular disease. Ann Neurol 29:231–240

    Article  CAS  PubMed  Google Scholar 

  42. d’Esterre CD, Fainardi E, Aviv RI, Lee TY (2012) Improving acute stroke management with computed tomography perfusion: a review of imaging basics and applications. Transl Stroke Res 3:205–220

    Article  PubMed  Google Scholar 

  43. Kudo K, Sasaki M, Yamada K, Momoshima S, Utsunomya H, Shirato H, Ogasawara K (2010) Differences in CT perfusion maps generated by different commercial software: quantitative analysis by using identical source data of acute stroke patients. Radiology 254:200–209

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Fainardi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarubbo, S., Latini, F., Ceruti, S. et al. Temporal changes in CT perfusion values before and after cranioplasty in patients without symptoms related to external decompression: a pilot study. Neuroradiology 56, 237–243 (2014). https://doi.org/10.1007/s00234-014-1318-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-014-1318-2

Keywords

Navigation