Skip to main content
Log in

The correlation between carotid siphon calcification and lacunar infarction

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

The aim of this study was to evaluate the correlation between carotid siphon (CS) calcification and lacunar infarction caused by small-vessel disease.

Methods

This retrospective study included 445 patients (M/F = 256:189) older than 40 years (mean age 60.0 ± 12.3 years, range 41–98 years) without large intracranial lesions who had undergone both brain CT and MRI within an interval of 6 months. The patients were classified into three groups according to the number of lacunar infarctions: group I—zero infarctions (n = 328), group II—one to three infarctions (n = 94), and group III—four or more infarctions (n = 23). The severity of CS calcification was evaluated on CT and scored on a five-point scale (0—none, 1—stippled, 2—thin continuous or thick discontinuous, 3—thick continuous, 4—double tracts), and the calcification scores on both sides were summed. An ANOVA test was used to compare calcification scores among the three groups, and a logistic regression test was used to evaluate the influence of CS calcification and known cerebrovascular risk factors on the occurrence of lacunar infarction.

Results

On the ANOVA test, total calcification scores were significantly different among the three groups (group I = 1.28 ± 1.99, group II = 3.31 ± 2.39, group III = 4.36 ± 2.08; P < 0.05). Higher rates of lacunar infarction were associated with higher CS calcification scores. On the logistic regression test, CS calcification, age, and hypertension were significant risk factors for lacunar infarction (P < 0.05).

Conclusion

CS calcification was correlated with the occurrence of lacunar infarction. The degree of CS calcification may be used to predict the possibility of a future lacunar infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CS:

Carotid siphon

ANOVA:

Analysis of variance

M:

Male

F:

Female

TR:

Repetition time

TE:

Echo time

FLAIR:

Fluid attenuation inversion recovery

HU:

Hounsfield unit

OR:

Odds ratio

CI:

Confidence interval

References

  1. Sangiorgi G, Rumberger JA, Severson A, Edwards WD, Gregoire J, Fitzpatrick LA, Schwartz RS (1998) Arterial calcification and not lumen stenosis is highly correlated with atherosclerotic plaque burden in humans: a histologic study of 723 coronary artery segments using nondecalcifying methodology. J Am Coll Cardiol 31:126–133

    Article  PubMed  CAS  Google Scholar 

  2. Kronzon I, Tunick PA (2006) Aortic atherosclerotic disease and stroke. Circulation 114:63–75

    Article  PubMed  Google Scholar 

  3. Baumgart D, Schmermund A, Goerge G, Haude M, Ge J, Adamzik M, Sehnert C, Altmaier K, Groenemeyer D, Seibel R, Erbel R (1997) Comparison of electron beam computed tomography with intracoronary ultrasound and coronary angiography for detection of coronary atherosclerosis. J Am Coll Cardiol 30:57–64

    Article  PubMed  CAS  Google Scholar 

  4. Mintz GS, Pichard AD, Popma JJ, Kent KM, Satler LF, Bucher TA, Leon MB (1997) Determinants and correlates of target lesion calcium in coronary artery disease: a clinical, angiographic and intravascular ultrasound study. J Am Coll Cardiol 29:268–274

    Article  PubMed  CAS  Google Scholar 

  5. Rumberger JA, Simons DB, Fitzpatrick LA, Sheedy PF, Schwartz RS (1995) Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study. Circulation 92:2157–2162

    PubMed  CAS  Google Scholar 

  6. Budoff MJ, Diamond GA, Raggi P, Arad Y, Guerci AD, Callister TQ, Berman D (2002) Continuous probabilistic prediction of angiographically significant coronary artery disease using electron beam tomography. Circulation 105:1791–1796

    Article  PubMed  Google Scholar 

  7. Pletcher MJ, Tice JA, Pignone M, Browner WS (2004) Using the coronary artery calcium score to predict coronary heart disease events: a systematic review and meta-analysis. Arch Intern Med 164:1285–1292

    Article  PubMed  Google Scholar 

  8. Shaw LJ, Raggi P, Schisterman E, Berman DS, Callister TQ (2003) Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality. Radiology 228:826–833

    Article  PubMed  Google Scholar 

  9. Vliegenthart R, Hollander M, Breteler MM, van der Kuip DA, Hofman A, Oudkerk M, Witteman JC (2002) Stroke is associated with coronary calcification as detected by electron-beam CT: the Rotterdam Coronary Calcification Study. Stroke 33:462–465

    Article  PubMed  Google Scholar 

  10. de Weert TT, Cakir H, Rozie S, Cretier S, Meijering E, Dippel DW, van der Lugt A (2009) Intracranial internal carotid artery calcifications: association with vascular risk factors and ischemic cerebrovascular disease. AJNR Am J Neuroradiol 30:177–184

    Article  PubMed  Google Scholar 

  11. Taoka T, Iwasaki S, Nakagawa H, Sakamoto M, Fukusumi A, Takayama K, Wada T, Myochin K, Hirohashi S, Kichikawa K (2006) Evaluation of arteriosclerotic changes in the intracranial carotid artery using the calcium score obtained on plain cranial computed tomography scan: correlation with angiographic changes and clinical outcome. J Comput Assist Tomogr 30:624–628

    Article  PubMed  Google Scholar 

  12. Babiarz LS, Yousem DM, Bilker W, Wasserman BA (2005) Middle cerebral artery infarction: relationship of cavernous carotid artery calcification. AJNR Am J Neuroradiol 26:1505–1511

    PubMed  Google Scholar 

  13. Erbay S, Han R, Baccei S, Krakov W, Zou KH, Bhadelia R, Polak J (2007) Intracranial carotid artery calcification on head ct and its association with ischemic changes on brain MRI in patients presenting with stroke-like symptoms: retrospective analysis. Neuroradiology 49:27–33

    Article  PubMed  CAS  Google Scholar 

  14. Lehto S, Ronnemaa T, Pyorala K, Laakso M (1996) Risk factors predicting lower extremity amputations in patients with NIDDM. Diab Care 19:607–612

    Article  CAS  Google Scholar 

  15. Lehto S, Niskanen L, Suhonen M, Ronnemaa T, Laakso M (1996) Medial artery calcification. A neglected harbinger of cardiovascular complications in non-insulin-dependent diabetes mellitus. Arterioscler Thromb Vasc Biol 16:978–983

    Article  PubMed  CAS  Google Scholar 

  16. Vattikuti R, Towler DA (2004) Osteogenic regulation of vascular calcification: an early perspective. Am J Physiol Endocrinol Metab 286:E686–E696

    Article  PubMed  CAS  Google Scholar 

  17. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M, Detrano R Jr (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15:827–832

    Article  PubMed  CAS  Google Scholar 

  18. Rumberger JA, Sheedy PF 3rd, Breen JF, Schwartz RS (1995) Coronary calcium, as determined by electron beam computed tomography, and coronary disease on arteriogram. Effect of patient's sex on diagnosis. Circulation 91:1363–1367

    PubMed  CAS  Google Scholar 

  19. Mautner SL, Mautner GC, Froehlich J, Feuerstein IM, Proschan MA, Roberts WC, Doppman JL (1994) Coronary artery disease: prediction with in vitro electron beam ct. Radiology 192:625–630

    PubMed  CAS  Google Scholar 

  20. Rumberger JA, Schwartz RS, Simons DB, Sheedy PF 3rd, Edwards WD, Fitzpatrick LA (1994) Relation of coronary calcium determined by electron beam computed tomography and lumen narrowing determined by autopsy. Am J Cardiol 73:1169–1173

    Article  PubMed  CAS  Google Scholar 

  21. Wayhs R, Zelinger A, Raggi P (2002) High coronary artery calcium scores pose an extremely elevated risk for hard events. J Am Coll Cardiol 39:225–230

    Article  PubMed  Google Scholar 

  22. Vliegenthart R, Oudkerk M, Song B, van der Kuip DA, Hofman A, Witteman JC (2002) Coronary calcification detected by electron-beam computed tomography and myocardial infarction. The Rotterdam Coronary Calcification Study. Eur Heart J 23:1596–1603

    Article  PubMed  CAS  Google Scholar 

  23. Iribarren C, Sidney S, Sternfeld B, Browner WS (2000) Calcification of the aortic arch: risk factors and association with coronary heart disease, stroke, and peripheral vascular disease. JAMA 283:2810–2815

    Article  PubMed  CAS  Google Scholar 

  24. Woodcock RJ Jr, Goldstein JH, Kallmes DF, Cloft HJ, Phillips CD (1999) Angiographic correlation of CT calcification in the carotid siphon. AJNR Am J Neuroradiol 20:495–499

    PubMed  Google Scholar 

  25. Marzewski DJ, Furlan AJ, St Louis P, Little JR, Modic MT, Williams G (1982) Intracranial internal carotid artery stenosis: longterm prognosis. Stroke 13:821–824

    Article  PubMed  CAS  Google Scholar 

  26. Craig DR, Meguro K, Watridge C, Robertson JT, Barnett HJ, Fox AJ (1982) Intracranial internal carotid artery stenosis. Stroke 13:825–828

    Article  PubMed  CAS  Google Scholar 

  27. Adams HP Jr, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, Marsh EE 3rd (1993) Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 24:35–41

    Article  PubMed  Google Scholar 

  28. Bamford JM, Warlow CP (1988) Evolution and testing of the lacunar hypothesis. Stroke 19:1074–1082

    Article  PubMed  CAS  Google Scholar 

  29. Fisher CM (1982) Lacunar strokes and infarcts: a review. Neurology 32:871–876

    PubMed  CAS  Google Scholar 

  30. de Jong G, Kessels F, Lodder J (2002) Two types of lacunar infarcts: further arguments from a study on prognosis. Stroke 33:2072–2076

    Article  PubMed  Google Scholar 

  31. Leoncini G, Ratto E, Viazzi F, Vaccaro V, Parodi A, Falqui V, Conti N, Tomolillo C, Deferrari G, Pontremoli R (2006) Increased ambulatory arterial stiffness index is associated with target organ damage in primary hypertension. Hypertension 48:397–403

    Article  PubMed  CAS  Google Scholar 

  32. Wang L, Jerosch-Herold M, Jacobs DR Jr, Shahar E, Detrano R, Folsom AR (2006) Coronary artery calcification and myocardial perfusion in asymptomatic adults: the MESA (multi-ethnic study of atherosclerosis). J Am Coll Cardiol 48:1018–1026

    Article  PubMed  CAS  Google Scholar 

  33. Pasterkamp G, Borst C, Post MJ, Mali WP, Wensing PJ, Gussenhoven EJ, Hillen B (1996) Atherosclerotic arterial remodeling in the superficial femoral artery. Individual variation in local compensatory enlargement response. Circulation 93:1818–1825

    PubMed  CAS  Google Scholar 

  34. Lodder J, Boiten J (1993) Incidence, natural history, and risk factors in lacunar infarction. Adv Neurol 62:213–227

    PubMed  CAS  Google Scholar 

  35. Besson G, Hommel M, Perret J (2000) Risk factors for lacunar infarcts. Cerebrovasc Dis 10:387–390

    Article  PubMed  CAS  Google Scholar 

  36. Spolveri S, Baruffi MC, Cappelletti C, Semerano F, Rossi S, Pracucci G, Inzitari D (1998) Vascular risk factors linked to multiple lacunar infarcts. Cerebrovasc Dis 8:152–157

    Article  PubMed  CAS  Google Scholar 

  37. Fisher CM (1969) The arterial lesion underlying lacunes. Acta Neuropathol Berl 12:1–15

    Article  Google Scholar 

Download references

Conflict of Interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung Suk Seo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, N.R., Seo, H.S., Lee, Y.H. et al. The correlation between carotid siphon calcification and lacunar infarction. Neuroradiology 53, 643–649 (2011). https://doi.org/10.1007/s00234-010-0798-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-010-0798-y

Keywords

Navigation