Skip to main content

Advertisement

Log in

Diagnostic examination performance by using microvascular leakage, cerebral blood volume, and blood flow derived from 3-T dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in the differentiation of glioblastoma multiforme and brain metastasis

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Conventional magnetic resonance (MR) imaging has limited capacity to differentiate between glioblastoma multiforme (GBM) and metastasis. The purposes of this study were: (1) to compare microvascular leakage (MVL), cerebral blood volume (CBV), and blood flow (CBF) in the distinction of metastasis from GBM using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging (DSC-MRI), and (2) to estimate the diagnostic accuracy of perfusion and permeability MR imaging.

Methods

A prospective study of 61 patients (40 GBMs and 21 metastases) was performed at 3 T using DSC-MRI. Normalized rCBV and rCBF from tumoral (rCBVt, rCBFt), peri-enhancing region (rCBVe, rCBFe), and by dividing the value in the tumor by the value in the peri-enhancing region (rCBVt/e, rCBFt/e), as well as MVL were calculated. Hemodynamic and histopathologic variables were analyzed statistically and Spearman/Pearson correlations. Receiver operating characteristic curve analysis was performed for each of the variables.

Results

The rCBVe, rCBFe, and MVL were significantly greater in GBMs compared with those of metastases. The optimal cutoff value for differentiating GBM from metastasis was 0.80 which implies a sensitivity of 95%, a specificity of 92%, a positive predictive value of 86%, and a negative predictive value of 97% for rCBVe ratio. We found a modest correlation between rCBVt and rCBFt ratios.

Conclusion

MVL measurements in GBMs are significantly higher than those in metastases. Statistically, both rCBVe, rCBVt/e and rCBFe, rCBFt/e were useful in differentiating between GBMs and metastases, supporting the hypothesis that perfusion MR imaging can detect infiltration of tumor cells in the peri-enhancing region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Newton HB, Malkin MG (2008) Overview of brain tumor epidemiology. In: Newton HB, Jolesz FA (eds) Handbook of neuro-oncology neuroimaging. Elsevier, New York, pp 3–8

    Chapter  Google Scholar 

  2. Nguyen TD, DeAngelis LM (2007) Brain metastases. Neurol Clin 25:1173–1192

    Article  PubMed  Google Scholar 

  3. Landis SH, Murray T, Bolden S, Wingo PA (1999) Cancer statistics. CA Cancer J Clin 49:8–31

    Article  PubMed  CAS  Google Scholar 

  4. Atlas SW, Lavi E, Fisher PG (2002) Intraaxial brain tumors. In: Atlas SW (ed) Magnetic resonance imaging of the brain and spine. Lippincott Williams & Wilkins, Philadelphia, pp 677–685

    Google Scholar 

  5. Maluf FC, DeAngelis LM, Raizer JJ, Abrey LE (2002) High-grade gliomas in patients with prior systemic malignancies. Cancer 94:3219–3224

    Article  PubMed  Google Scholar 

  6. Giese A, Bjerkvig R, Berens ME, Westphal M (2003) Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol 21:1624–1636

    Article  PubMed  CAS  Google Scholar 

  7. Barnard RO, Geddes JF (1987) The incidence of multifocal cerebral gliomas. A histologic study of large hemisphere sections. Cancer 60:1519–1531

    Article  PubMed  CAS  Google Scholar 

  8. Patchell RA, Tibbs PA, Walsh JW, Dempsey RJ, Maruyama Y, Kryscio RJ, Markesbery WR, Macdonald JS, Young B (1990) A randomized trial of surgery in the treatment of single metastases to the brain. N Eng J Med 322:494–500

    Article  CAS  Google Scholar 

  9. Giese A, Westphal M (2001) Treatment of malignant glioma: a problem beyond the margins of resection. J Cancer Res Clin Oncol 127:217–225

    Article  PubMed  CAS  Google Scholar 

  10. O'Neill BP, Buckner JC, Coffey RJ, Dinapoli RP, Shaw EG (1994) Brain metastatic lesions. Mayo Clin Proc 69:1062–1068

    PubMed  Google Scholar 

  11. Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT (2007) Angiogenesis in brain tumors. Nat Rev Neurosci 8:610–622

    Article  PubMed  CAS  Google Scholar 

  12. Fidler IJ, Yano S, Zhang RD, Fujimaki T, Bucana CD (2002) The seed and soil hypothesis: vascularisation and brain metastases. Lancet Oncol 3:53–57

    Article  PubMed  CAS  Google Scholar 

  13. Ocak I, Baluk P, Barrett T, McDonald DM, Choyke P (2007) The biologic basis of in vivo angiogenesis imaging. Front Biosci 12:3601–3616

    Article  PubMed  CAS  Google Scholar 

  14. Wesseling P, Ruiter DJ, Burger PC (1997) Angiogenesis in brain tumors; pathobiological and clinical aspects. J Neurooncol 32:253–265

    Article  PubMed  CAS  Google Scholar 

  15. Jinnouchi T, Shibata S, Fukushima M, Mori K (1988) Ultrastructure of capillary permeability in human brain tumor—Part 6: metastatic brain tumor with brain edema. No Shinkei Geka 16(5 Suppl):563–568

    PubMed  CAS  Google Scholar 

  16. Gagner JP, Law M, Fischer I, Newcomb EW, Zagzag D (2005) Angiogenesis in gliomas: imaging and experimental therapeutics. Brain Pathol 15:342–363

    Article  PubMed  CAS  Google Scholar 

  17. Cha S (2004) Perfusion MR imaging of brain tumors. Top Magn Reson Imaging 15:279–289

    Article  PubMed  Google Scholar 

  18. Young RJ, Sills AK, Brem S, Knopp EA (2005) Neuroimaging of metastatic brain disease. Neurosurgery 57(5 Suppl):S10–S23

    PubMed  Google Scholar 

  19. Sentürk S, Oğuz KK, Cila A (2009) Dynamic contrast-enhanced susceptibility-weighted perfusion imaging of intracranial tumors: a study using a 3 T MR scanner. Diagn Interv Radiol 15:3–12

    PubMed  Google Scholar 

  20. Law M, Cha S, Knopp EA, Johnson G, Arnett J, Litt AW (2002) High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology 222:715–721

    Article  PubMed  Google Scholar 

  21. Rollin N, Guyotat J, Streichenberger N, Honnorat J, Tran Minh VA, Cotton F (2006) Clinical relevance of diffusion and perfusion magnetic resonance imaging in assessing intra-axial brain tumors. Neuroradiology 48:150–159

    Article  PubMed  CAS  Google Scholar 

  22. Chiang IC, Kuo YT, Lu CY, Yeung KW, Lin WC, Sheu FO, Liu GC (2004) Distinction between high-grade gliomas and solitary metastases using peritumoral 3-T magnetic resonance spectroscopy, diffusion, and perfusion imagings. Neuroradiology 46:619–627

    Article  PubMed  Google Scholar 

  23. Hakyemez B, Erdogan C, Bolca N, Yildirim N, Gokalp G, Parlak M (2006) Evaluation of different cerebral mass lesions by perfusion-weighted MR imaging. J Magn Reson Imaging 24:817–824

    Article  PubMed  Google Scholar 

  24. Calli C, Kitis O, Yunten N, Yurtseven T, Islekel S, Akalin T (2006) Perfusion and diffusion MR imaging in enhancing malignant cerebral tumors. Eur J Radiol 58:394–403

    Article  PubMed  Google Scholar 

  25. Weber MA, Zoubaa S, Schlieter M, Jüttler E, Huttner HB, Geletneky K, Ittrich C, Lichy MP, Kroll A, Debus J, Giesel FL, Hartmann M, Essig M (2006) Diagnostic performance of spectroscopic and perfusion MRI for distinction of brain tumors. Neurology 66:1899–1906

    Article  PubMed  CAS  Google Scholar 

  26. Lüdemann L, Grieger W, Wurm R, Wust P, Zimmer C (2005) Quantitative measurement of leakage volume and permeability in gliomas, meningiomas and brain metastases with dynamic contrast-enhanced MRI. Magn Reson Imaging 23:833–841

    Article  PubMed  Google Scholar 

  27. Bulakbasi N, Kocaoglu M, Farzaliyev A, Tayfun C, Ucoz T, Somuncu I (2005) Assessment of diagnostic accuracy of perfusion MR imaging in primary and metastatic solitary malignant brain tumors. AJNR Am J Neuroradiol 26:2187–2199

    PubMed  Google Scholar 

  28. Kleihues P, Louis DN, Scheithauer BW, Rorke LB, Reifenberger G, Burger PC, Cavenee WK (2002) The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol 61:215–225

    PubMed  Google Scholar 

  29. Rosen BR, Belliveau JW, Vevea JM, Brady TJ (1990) Perfusion imaging with NMR contrast agents. Magn Reson Med 14:249–265

    Article  PubMed  CAS  Google Scholar 

  30. Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn Reson Med 36:715–725

    Article  PubMed  CAS  Google Scholar 

  31. Boxerman JL, Schmainda KM, Weisskoff RM (2006) Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 27:859–867

    PubMed  CAS  Google Scholar 

  32. Emblem KE, Due-Tonnessen P, Hald JK, Bjornerud A (2009) Automatic vessel removal in gliomas from dynamic susceptibility contrast imaging. Magn Reson Med 61:1210–1217

    Article  PubMed  Google Scholar 

  33. Wetzel SG, Cha S, Johnson G, Lee P, Law M, Kasow DL, Pierce SD, Xue X (2002) Relative cerebral blood volume measurements in intracranial mass lesions: interobserver and intraobserver reproducibility study. Radiology 224:797–803

    Article  PubMed  Google Scholar 

  34. Ranjan T, Abrey LE (2009) Current management of metastatic brain disease. Neurotherapeutics 6:598–603

    Article  PubMed  CAS  Google Scholar 

  35. Young GS, Setayesh K (2009) Spin-echo echo-planar perfusion MR imaging in the differential diagnosis of solitary enhancing brain lesions: distinguishing solitary metastases from primary glioma. AJNR Am J Neuroradiol 30:575–577

    Article  PubMed  CAS  Google Scholar 

  36. Mukundan S, Holder C, Olson JJ (2008) Neuroradiological assessment of newly diagnosed glioblastoma. J Neurooncol 89:259–269

    Article  PubMed  Google Scholar 

  37. Cha S (2006) Update on brain tumor imaging: from anatomy to physiology. AJNR Am J Neuroradiol 27:475–487

    PubMed  CAS  Google Scholar 

  38. Provenzale JM, Wang GR, Brenner T, Petrella JR, Sorensen AG (2002) Comparison of permeability in high-grade and low-grade brain tumors using dynamic susceptibility contrast MR imaging. AJR Am J Roentgenol 178:711–716

    PubMed  Google Scholar 

  39. Law M, Yang S, Babb JS, Knopp EA, Golfinos JG, Zagzag D, Johnson G (2004) Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR Am J Neuroradiol 25:746–755

    PubMed  Google Scholar 

  40. Roberts HC, Dillon WP (2000) MR imaging of brain tumors: toward physiologic imaging. AJNR Am J Neuroradiol 21:1570–1571

    PubMed  CAS  Google Scholar 

  41. Roberts HC, Roberts TP, Ley S, Dillon WP, Brasch RC (2002) Quantitative estimation of microvascular permeability in human brain tumors: correlation of dynamic Gd-DTPA-enhanced MR imaging with histopathologic grading. Acad Radiol 9(Suppl 1):S151–S155

    Article  PubMed  Google Scholar 

  42. Jain R, Elika SK, Scarpace L, Rock JP, Gutierrez J, Patel SC, Ewing J, Mikkelsen T (2008) Quantitative estimation of permeability surface-area product in astroglial brain tumors using perfusion CT and correlation with histopathologic grade. AJNR Am J Neuroradiol 29:694–700

    Article  PubMed  CAS  Google Scholar 

  43. Tate MC, Aghi MK (2009) Biology of angiogenesis and invasion in glioma. Neurotherapeutics 6:447–457

    Article  PubMed  CAS  Google Scholar 

  44. Folkman J (2006) Angiogenesis. Annu Rev Med 57:1–18

    Article  PubMed  CAS  Google Scholar 

  45. Bullitt E, Reardon DA, Smith JK (2007) A review of micro- and macrovascular analysis in the assessment of tumor-associated vasculature as visualized by MR. Neuroimage 37(Suppl 1):S116–119

    Article  PubMed  Google Scholar 

  46. Carbonell WS, Ansorge O, Sibson N, Muschel R (2009) The vascular basement membrane as “soil” in brain metastases. PLoS ONE 4:e5857

    Article  PubMed  Google Scholar 

  47. Hasegawa H, Ushio Y, Hayakawa T, Yamada K, Mogami H (1983) Changes of the blood-brain barrier in experimental metastatic brain tumors. J Neurosurg 59:304–310

    Article  PubMed  CAS  Google Scholar 

  48. Zhang M, Olsson Y (1997) Hematogenous metastases of the human brain—characteristics of peritumoral brain changes: a review. J Neurooncol 35:81–89

    Article  PubMed  CAS  Google Scholar 

  49. Bertossi M, Virgintino D, Maiorano E, Occhiogrosso M, Roncali L (1997) Ultrastructural and morphometric investigation of human brain capillaries in normal and peritumoral tissues. Ultrastruct Pathol 21:41–49

    Article  PubMed  CAS  Google Scholar 

  50. Stummer W (2007) Mechanisms of tumor-related brain edema. Neurosurg Focus 15(22):E8

    Google Scholar 

  51. Engelhorn T, Savaskan NE, Schwarz MA, Kreutzer J, Meyer EP, Hahnen E, Ganslandt O, Dörfler A, Nimsky C, Buchfelder M, Eyüpoglu IY (2009) Cellular characterization of the peritumoral edema zone in malignant brain tumors. Cancer Sci 100:1856–1862

    Article  PubMed  CAS  Google Scholar 

  52. Long DM (1979) Capillary ultrastructure in human metastatic brain tumors. J Neurosurg 51:53–58

    Article  PubMed  CAS  Google Scholar 

  53. Stewart PA, Hayakawa K, Hayakawa E, Farrell CL, Del Maestro RF (1985) A quantitative study of blood-brain barrier permeability ultrastructure in a new rat glioma model. Acta Neuropathol 67:96–102

    Article  PubMed  CAS  Google Scholar 

  54. Shin JH, Lee HK, Kwun BD, Kim JS, Kang W, Choi CG, Suh DC (2002) Using relative cerebral blood flow and volume to evaluate the histopathologic grade of cerebral gliomas: preliminary results. AJR Am J Roentgenol 179:783–789

    PubMed  Google Scholar 

  55. Gerstner ER, Sorensen AG, Jain RK, Batchelor TT (2008) Advances in neuroimaging techniques for the evaluation of tumor growth, vascular permeability, and angiogenesis in gliomas. Curr Opin Neurol 21:728–735

    Article  PubMed  Google Scholar 

  56. Miller JC, Pien HH, Sahani D, Sorensen AG, Thrall JH (2005) Imaging angiogenesis: applications and potential for drug development. J Natl Cancer Inst 97:172–187

    Article  PubMed  CAS  Google Scholar 

  57. Ostergaard L, Hochberg FH, Rabinov JD, Sorensen AG, Lev M, Kim L, Weisskoff RM, Gonzalez RG, Gyldensted C, Rosen BR (1999) Early changes measured by magnetic resonance imaging in cerebral blood flow, blood volume, and blood-brain barrier permeability following dexamethasone treatment in patients with brain tumors. J Neurosurg 90:300–305

    Article  PubMed  CAS  Google Scholar 

  58. McDonald DM, Choyke PL (2003) Imaging of angiogenesis: from microscope to clinic. Nat Med 9:713–725

    Article  PubMed  CAS  Google Scholar 

  59. Bhujwalla ZM, Artemov D, Natarajan K, Solaiyappan M, Kollars P, Kristjansen PE (2003) Reduction of vascular and permeable regions in solid tumors detected by macromolecular contrast magnetic resonance imaging after treatment with antiangiogenic agent TNP-470. Clin Cancer Res 9:355–362

    PubMed  CAS  Google Scholar 

  60. Chernov MF, Kubo O, Hayashi M, Izawa M, Maruyama T, Usukura M, Ono Y, Hori T, Takakura K (2005) Proton MRS of the peritumoral brain. J Neurol Sci 228:137–142

    Article  PubMed  CAS  Google Scholar 

  61. Lüdemann L, Warmuth C, Plotkin M, Förschler A, Gutberlet M, Wust P, Amthauer H (2009) Brain tumor perfusion: comparison of dynamic contrast enhanced magnetic resonance imaging using T1, T2, and T2* contrast, pulsed arterial spin labelling, and H2(15)O positron emission tomography. Eur J Radiol 70:465–474

    Article  PubMed  Google Scholar 

  62. Paulson ES, Schmainda KM (2008) Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors. Radiology 249:601–613

    Article  PubMed  Google Scholar 

  63. Levin JM, Wald LL, Kaufman MJ, Ross MH, Maas LC, Renshaw PF (1998) T1 effects in sequential dynamic susceptibility contrast experiments. J Magn Reson 130:292–295

    Article  PubMed  CAS  Google Scholar 

  64. Runge VM, Kirsch JE, Wells JW, Dunworth JN, Hilaire L, Woolfolk CE (1994) Repeat cerebral blood volume assessment with first-pass MR imaging. J Magn Reson Imaging 4:457–461

    Article  PubMed  CAS  Google Scholar 

  65. Levin JM, Wald LL, Kaufman MJ, Ross MH, Maas LC, Renshaw PF (1995) Sequential dynamic susceptibility contrast MR experiments in human brain: residual contrast agent effect, steady state, and hemodynamic perturbation. Magn Reson Med 34:655–663

    Article  PubMed  CAS  Google Scholar 

  66. Barajas RF, Chang JS, Segal MR, Parsa AT, McDermott MW, Berger MS, Cha S (2009) Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 253:486–496

    Article  PubMed  Google Scholar 

Download references

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Server.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Server, A., Orheim, T.E.D., Graff, B.A. et al. Diagnostic examination performance by using microvascular leakage, cerebral blood volume, and blood flow derived from 3-T dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in the differentiation of glioblastoma multiforme and brain metastasis. Neuroradiology 53, 319–330 (2011). https://doi.org/10.1007/s00234-010-0740-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-010-0740-3

Keywords

Navigation