Skip to main content

Advertisement

Log in

Assessment of extracranial–intracranial bypass patency with 64-slice multidetector computerized tomography angiography

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Extracranial–intracranial (EC/IC) bypass is a useful procedure for the treatment of cerebral vascular insufficiency or complex aneurysms. We explored the role of multidetector computed tomography angiography (MDCTA), instead of digital subtraction angiography (DSA), for the postoperative assessment of EC/IC bypass patency.

Methods

We retrospectively analyzed a consecutive series of 21 MDCTAs from 17 patients that underwent 25 direct or indirect EC/IC bypass procedures between April 2003 and November 2007. Conventional DSA was available for comparison in 13 cases. MDCTA used a 64-slice MDCT scanner (Aquilion 64, Toshiba). The proximal and distal patencies were analyzed independently on MDCTA and DSA by a neuroradiologist and a neurosurgeon. The bypass was considered patent when the entire donor vessel was opacified without discontinuity from proximal to distal ends and was visibly in contact with the recipient vessel.

Results

MDCTA depicted the patency status in every patient. Bypasses were patent in 22 cases, stenosed in one, and occluded in two. DSA always confirmed the results of the MDCTA (sensitivity = 100%, 95% CI = 0.655–1.0; specificity 100%, 95% CI = 0.05–1.0).

Conclusions

MDCTA is a non-invasive and accurate exam to assess the postoperative EC/IC bypass patency and is a promising technique in routine follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Charbel FT, Meglio G, min-Hanjani S (2005) Superficial temporal artery-to-middle cerebral artery bypass. Neurosurgery 56:186–190

    Article  PubMed  Google Scholar 

  2. Okada Y, Shima T, Nishida M, Yamane K, Yamada T, Yamanaka C (1998) Effectiveness of superficial temporal artery-middle cerebral artery anastomosis in adult moyamoya disease: cerebral hemodynamics and clinical course in ischemic and hemorrhagic varieties. Stroke 29:625–630

    PubMed  CAS  Google Scholar 

  3. Schmiedek P, Piepgras A, Leinsinger G, Kirsch CM, Einhupl K (1994) Improvement of cerebrovascular reserve capacity by EC-IC arterial bypass surgery in patients with ICA occlusion and hemodynamic cerebral ischemia. J Neurosurg 81:236–244

    Article  PubMed  CAS  Google Scholar 

  4. Peerless SJ, Ferguson GG, Drake CG (1982) Extracranial–intracranial (EC/IC) bypass in the treatment of giant intracranial aneurysms. Neurosurg Rev 5:77–81

    Article  PubMed  CAS  Google Scholar 

  5. Spetzler RF, Schuster H, Roski RA (1980) Elective extracranial–intracranial arterial bypass in the treatment of inoperable giant aneurysms of the internal carotid artery. J Neurosurg 53:22–27

    Article  PubMed  CAS  Google Scholar 

  6. Mohit AA, Sekhar LN, Natarajan SK, Britz GW, Ghodke B (2007) High-flow bypass grafts in the management of complex intracranial aneurysms. Neurosurgery 60: ONS105-ONS122

  7. min-Hanjani S, Butler WE, Ogilvy CS, Carter BS, Barker FG (2005) Extracranial–intracranial bypass in the treatment of occlusive cerebrovascular disease and intracranial aneurysms in the United States between 1992 and 2001: a population-based study. J Neurosurg 103:794–804

    Article  Google Scholar 

  8. Wolfe SQ, Tummala RP, Morcos JJ (2005) Cerebral revascularization in skull base tumors. Skull Base 15:71–82

    Article  PubMed  Google Scholar 

  9. Couldwell WT, Liu JK, Amini A, Kan P (2006) Submandibular-infratemporal interpositional carotid artery bypass for cranial base tumors and giant aneurysms. Neurosurgery 59:ONS353–ONS359

    Article  PubMed  Google Scholar 

  10. Grubb RL Jr, Powers WJ, Derdeyn CP, Adams HP Jr, Clarke WR (2003) The carotid occlusion surgery study. Neurosurg Focus 14:e9

    Article  PubMed  Google Scholar 

  11. Bregy A, Alfieri A, Demertzis S, Mordasini P, Jetzer AK, Kuhlen D, Schaffner T, Dacey R, Steiger HJ, Reinert M (2008) Automated end-to-side anastomosis to the middle cerebral artery: a feasibility study. J Neurosurg 108:567–574

    Article  PubMed  Google Scholar 

  12. Ferroli P, Biglioli F, Ciceri E, Addis A, Broggi G (2007) Self-closing U-clips for intracranial microanastomoses in high-flow arterial bypass: technical case report. Neurosurgery 60:ONSE170

    Article  PubMed  Google Scholar 

  13. Streefkerk HJ, Kleinveld S, Koedam EL, Bulder MM, Meelduk HD, Verdaasdonk RM, Beck RJ, Vander ZB, Tulleken CA (2005) Long-term reendothelialization of excimer laser-assisted nonocclusive anastomoses compared with conventionally sutured anastomoses in pigs. J Neurosurg 103:328–336

    Article  PubMed  Google Scholar 

  14. Wanebo JE, min-Hanjani S, Boyd C, Peery T (2005) Assessing success after cerebral revascularization for ischemia. Skull Base 15:215–227

    Article  PubMed  Google Scholar 

  15. Agid R, Lee SK, Willinsky RA, Farb RI, terBrugge KG (2006) Acute subarachnoid hemorrhage: using 64-slice multidetector CT angiography to “triage” patients' treatment. Neuroradiology 48:787–794

    Article  PubMed  CAS  Google Scholar 

  16. Anderson GB, Steinke DE, Petruk KC, Ashforth R, Findlay JM (1999) Computed tomographic angiography versus digital subtraction angiography for the diagnosis and early treatment of ruptured intracranial aneurysms. Neurosurgery 45:1315–1320

    Article  PubMed  CAS  Google Scholar 

  17. Dehdashti AR, Rufenacht DA, Delavelle J, Reverdin A, de TN (2003) Therapeutic decision and management of aneurysmal subarachnoid haemorrhage based on computed tomographic angiography. Br J Neurosurg 17:46–53

    Article  PubMed  CAS  Google Scholar 

  18. Hoh BL, Cheung AC, Rabinov JD, Pryor JC, Carter BS, Ogilvy CS (2004) Results of a prospective protocol of computed tomographic angiography in place of catheter angiography as the only diagnostic and pretreatment planning study for cerebral aneurysms by a combined neurovascular team. Neurosurgery 54:1329–1340

    Article  PubMed  Google Scholar 

  19. Pechlivanis I, Schmieder K, Scholz M, Konig M, Heuser L, Harders A (2005) 3-Dimensional computed tomographic angiography for use of surgery planning in patients with intracranial aneurysms. Acta Neurochir (Wien) 147:1045–1053

    Article  CAS  Google Scholar 

  20. Villablanca JP, Hooshi P, Martin N, Jahan R, Duckwiler G, Lim S, Frazee J, Gobin YP, Sayre J, Bentson J, Vinuela F (2002) Three-dimensional helical computerized tomography angiography in the diagnosis, characterization, and management of middle cerebral artery aneurysms: comparison with conventional angiography and intraoperative findings. J Neurosurg 97:1322–1332

    Article  PubMed  Google Scholar 

  21. Dehdashti AR, Binaghi S, Uske A, Regli L (2006) Comparison of multislice computerized tomography angiography and digital subtraction angiography in the postoperative evaluation of patients with clipped aneurysms. J Neurosurg 104:395–403

    Article  PubMed  Google Scholar 

  22. Sakuma I, Tomura N, Kinouchi H, Takahashi S, Otani T, Watarai J, Mizoi K (2006) Postoperative three-dimensional CT angiography after cerebral aneurysm clipping with titanium clips: detection with single detector CT. Comparison with intra-arterial digital subtraction angiography. Clin Radiol 61:505–512

    Article  PubMed  CAS  Google Scholar 

  23. Gauvrit JY, Leclerc X, Caron S, Taschner CA, Lejeune JP, Pruvo JP (2006) Intracranial aneurysms treated with Guglielmi detachable coils: imaging follow-up with contrast-enhanced MR angiography. Stroke 37:1033–1037

    Article  PubMed  Google Scholar 

  24. Westerlaan HE, Gravendeel J, Fiore D, Metzemaekers JD, Groen RJ, Mooij JJ, Oudkerk M (2007) Multislice CT angiography in the selection of patients with ruptured intracranial aneurysms suitable for clipping or coiling. Neuroradiology 49:997–1007

    Article  PubMed  CAS  Google Scholar 

  25. Taschner CA, Thines L, Lernout M, Lejeune JP, Leclerc X (2007) Treatment decision in ruptured intracranial aneurysms: comparison between multi-detector row CT angiography and digital subtraction angiography. J Neuroradiol 34:243–249

    PubMed  Google Scholar 

  26. Mikulis DJ, Krolczyk G, Desal H, Logan W, Deveber G, Dirks P, Tymianski M, Crawley A, Vesely A, Kassner A, Preiss D, Somogyi R, Fisher JA (2005) Preoperative and postoperative mapping of cerebrovascular reactivity in moyamoya disease by using blood oxygen level-dependent magnetic resonance imaging. J Neurosurg 103:347–355

    Article  PubMed  Google Scholar 

  27. Suzuki J, Takaku A (1969) Cerebrovascular “moyamoya” disease. Disease showing abnormal net-like vessels in base of brain. Arch Neurol 20:288–299

    PubMed  CAS  Google Scholar 

  28. Doelken M, Struffert T, Richter G, Engelhorn T, Nimsky C, Ganslandt O, Hammen T, Doerfler A (2008) Flat-panel detector volumetric CT for visualization of subarachnoid hemorrhage and ventricles: preliminary results compared to conventional CT. Neuroradiology 50:517–523

    Article  PubMed  CAS  Google Scholar 

  29. Weinstein PR, Baena R, Chater NL (1984) Results of extracranial–intracranial arterial bypass for intracranial internal carotid artery stenosis: review of 105 cases. Neurosurgery 15:787–794

    Article  PubMed  CAS  Google Scholar 

  30. Matsushima T, Inoue T, Suzuki SO, Fujii K, Fukui M, Hasuo K (1992) Surgical treatment of moyamoya disease in pediatric patients–comparison between the results of indirect and direct revascularization procedures. Neurosurgery 31:401–405

    Article  PubMed  CAS  Google Scholar 

  31. Suzuki Y, Negoro M, Shibuya M, Yoshida J, Negoro T, Watanabe K (1997) Surgical treatment for pediatric moyamoya disease: use of the superficial temporal artery for both areas supplied by the anterior and middle cerebral arteries. Neurosurgery 40:324–329

    Article  PubMed  CAS  Google Scholar 

  32. Barrow DL, Boyer KL, Joseph GJ (1992) Intraoperative angiography in the management of neurovascular disorders. Neurosurgery 30:153–159

    Article  PubMed  CAS  Google Scholar 

  33. Heiserman JE, Dean BL, Hodak JA, Flom RA, Bird CR, Drayer BP, Fram EK (1994) Neurologic complications of cerebral angiography. AJNR Am J Neuroradiol 15:1401–1407

    PubMed  CAS  Google Scholar 

  34. Kaufmann TJ, Huston JIII, Mandrekar JN, Schleck CD, Thielen KR, Kallmes DF (2007) Complications of diagnostic cerebral angiography: evaluation of 19, 826 consecutive patients. Radiology 243:812–819

    Article  PubMed  Google Scholar 

  35. Fukui M (1997) Guidelines for the diagnosis and treatment of spontaneous occlusion of the circle of Willis ('moyamoya' disease). Research Committee on Spontaneous Occlusion of the Circle of Willis (Moyamoya Disease) of the Ministry of Health and Welfare, Japan. Clin Neurol Neurosurg 99(Suppl 2):S238–S240

    PubMed  Google Scholar 

  36. Ma J, Mehrkens JH, Holtmannspoetter M, Linke R, Schmid-Elsaesser R, Steiger HJ, Brueckmann H, Bruening R (2007) Perfusion MRI before and after acetazolamide administration for assessment of cerebrovascular reserve capacity in patients with symptomatic internal carotid artery (ICA) occlusion: comparison with 99mTc-ECD SPECT. Neuroradiology 49:317–326

    Article  PubMed  CAS  Google Scholar 

  37. Sundt TM Jr, Whisnant JP, Fode NC, Piepgras DG, Houser OW (1985) Results, complications, and follow-up of 415 bypass operations for occlusive disease of the carotid system. Mayo Clin Proc 60:230–240

    PubMed  Google Scholar 

  38. Perren F, Horn P, Vajkoczy P, Schmiedek P, Meairs S (2005) Power Doppler imaging in detection of surgically induced indirect neoangiogenesis in adult moyamoya disease. J Neurosurg 103:869–872

    Article  PubMed  Google Scholar 

  39. Kodama T, Ueda T, Suzuki Y, Yano T, Watanabe K (1993) MRA in the evaluation of EC-IC bypass patency. J Comput Assist Tomogr 17:922–926

    Article  PubMed  CAS  Google Scholar 

  40. Kodoma T, Suzuki Y, Yano T, Watanabe K, Ueda T, Asada K (1995) Phase-contrast MRA in the evaluation of EC-IC bypass patency. Clin Radiol 50:459–465

    Article  PubMed  CAS  Google Scholar 

  41. Zhao M, Charbel FT, Alperin N, Loth F, Clark ME (2000) Improved phase-contrast flow quantification by three-dimensional vessel localization. Magn Reson Imaging 18:697–706

    Article  PubMed  CAS  Google Scholar 

  42. min-Hanjani S, Shin JH, Zhao M, Du X, Charbel FT (2007) Evaluation of extracranial–intracranial bypass using quantitative magnetic resonance angiography. J Neurosurg 106:291–298

    Article  Google Scholar 

  43. Horn P, Vajkoczy P, Schmiedek P, Neff W (2004) Evaluation of extracranial–intracranial arterial bypass function with magnetic resonance angiography. Neuroradiology 46:723–729

    Article  PubMed  CAS  Google Scholar 

  44. Rixe J, Achenbach S, Ropers D, Baum U, Kuettner A, Ropers U, Bautz W, Daniel WG, Anders K (2006) Assessment of coronary artery stent restenosis by 64-slice multi-detector computed tomography. Eur Heart J 27:2567–2572

    Article  PubMed  Google Scholar 

  45. Ropers D, Pohle FK, Kuettner A, Pflederer T, Anders K, Daniel WG, Bautz W, Baum U, Achenbach S (2006) Diagnostic accuracy of noninvasive coronary angiography in patients after bypass surgery using 64-slice spiral computed tomography with 330-ms gantry rotation. Circulation 114:2334–2341

    Article  PubMed  Google Scholar 

  46. van Loon JJ, Yousry TA, Fink U, Seelos KC, Reulen HJ, Steiger HJ (1997) Postoperative spiral computed tomography and magnetic resonance angiography after aneurysm clipping with titanium clips. Neurosurgery 41:851–856

    Article  PubMed  Google Scholar 

  47. Kikuchi M, Asato M, Sugahara S, Nakajima K, Sato M, Nagao K, Kumagai N, Muraosa Y, Ito K, Hoshino H (1996) Evaluation of surgically formed collateral circulation in moyamoya disease with 3D-CT angiography: comparison with MR angiography and X-ray angiography. Neuropediatrics 27:45–49

    Article  PubMed  CAS  Google Scholar 

  48. Teksam M, McKinney A, Truwit CL (2004) Multi-slice CT angiography in evaluation of extracranial–intracranial bypass. Eur J Radiol 52:217–220

    Article  PubMed  Google Scholar 

  49. Tsuchiya K, Aoki C, Katase S, Hachiya J, Shiokawa Y (2003) Visualization of extracranial–intracranial bypass using multidetector-row helical computed tomography angiography. J Comput Assist Tomogr 27:231–234

    Article  PubMed  Google Scholar 

  50. van der Schaaf I, van Leeuwen M, Vlassenbroek A, Velthuis B (2006) Minimizing clip artifacts in multi CT angiography of clipped patients. AJNR Am J Neuroradiol 27:60–66

    PubMed  Google Scholar 

  51. Hausleiter J, Meyer T, Hadamitzky M, Huber E, Zankl M, Martinoff S, Kastrati A, Schomig A (2006) Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation 113:1305–1310

    Article  PubMed  Google Scholar 

  52. Coles DR, Smail MA, Negus IS, Wilde P, Oberhoff M, Karsch KR, Baumbach A (2006) Comparison of radiation doses from multislice computed tomography coronary angiography and conventional diagnostic angiography. J Am Coll Cardiol 47:1840–1845

    Article  PubMed  Google Scholar 

  53. Bahner ML, Bengel A, Brix G, Zuna I, Kauczor HU, Delorme S (2005) Improved vascular opacification in cerebral computed tomography angiography with 80 kVp. Invest Radiol 40:229–234

    Article  PubMed  Google Scholar 

  54. Deetjen A, Mollmann S, Conradi G, Rolf A, Schmermund A, Hamm CW, Dill T (2007) Use of automatic exposure control in multislice computed tomography of the coronaries: comparison of 16-slice and 64-slice scanner data with conventional coronary angiography. Heart 93:1040–1043

    Article  PubMed  Google Scholar 

  55. Waaijer A, Prokop M, Velthuis BK, Bakker CJ, de Kort GA, van Leeuwen MS (2007) Circle of Willis at CT angiography: dose reduction and image quality–reducing tube voltage and increasing tube current settings. Radiology 242:832–839

    Article  PubMed  Google Scholar 

  56. Yang CY, Chen YF, Lee CW, Huang A, Shen Y, Wei C, Liu HM (2008) Multiphase CT angiography versus single-phase CT angiography: comparison of image quality and radiation dose. AJNR Am J Neuroradiol 29:1288–1295

    Article  PubMed  Google Scholar 

Download references

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Tymianski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thines, L., Agid, R., Dehdashti, A.R. et al. Assessment of extracranial–intracranial bypass patency with 64-slice multidetector computerized tomography angiography. Neuroradiology 51, 505–515 (2009). https://doi.org/10.1007/s00234-009-0522-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-009-0522-y

Keywords

Navigation