Skip to main content

Advertisement

Log in

The effect of MR contrast medium dose on pituitary gland enhancement, microlesion enhancement and pituitary gland-to-lesion contrast conspicuity

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

The purpose of this study was to compare the differences in gland enhancement, microlesion enhancement and gland–lesion contrast ratio in patient groups in which half-dose (HD), standard-dose (SD) and double-dose (DD) contrast medium was used in pituitary MR imaging.

Methods

Pituitary gland enhancement and microlesion enhancement were measured and gland–lesion contrast ratios were calculated in 18 patients receiving HD (0.05 mmol/kg), 9 receiving SD (0.1 mmol/kg) and 13 receiving DD (0.2 mmol/kg) contrast medium. Gland enhancement and microlesion enhancement over baseline were determined employing DICOM region of interest measurements and compared after normalization to temporal lobe white matter. Contrast ratios and differences were also calculated and compared.

Results

Gland enhancement and lesion enhancement were greater with larger contrast medium doses (gland: HD 50%, SD 99%, DD 132%; microlesion: HD 19%, SD 54%, DD 86%). The gland–lesion contrast ratios were similar with the three doses (25.6%), reflecting expected similar fractional contrast medium distributions in spite of different doses. The signal difference between gland and microlesion, therefore, was a fixed percentage of gland enhancement (ΔS approximately 26%) with greater signal differences with larger contrast medium doses.

Conclusion

Greater gland-to-lesion signal differences with larger contrast medium doses would likely improve pituitary microlesion visualization and margin characterization aiding in microlesion detection as well as preoperative planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kucharczyk W, Davis DO, Kelly WM, Sze G, Norman D, Newton TH (1986) Pituitary adenomas: high-resolution MR imaging at 1.5 T. Radiology 161:761–765

    PubMed  CAS  Google Scholar 

  2. Davis PC, Hoffman JC Jr, Spencer T, Tindall GT, Braun IF (1987) MR imaging of pituitary adenoma: CT, clinical and surgical correlation. AJNR Am J Neuroradiol 8:107–112

    Google Scholar 

  3. Kulkarni MV, Lee KF, McArdle CB, Yeakley JW, Haar FL (1988) 1.5-T MR imaging of pituitary microadenomas: technical considerations and CT correlation. AJNR Am J Neuroradiol 9:5–11

    PubMed  CAS  Google Scholar 

  4. Davis PC, Hoffman JC Jr, Malko JA, Tindall GT, Takei Y, Avruch L, Braun IF (1987) Gadolinium-DPTA and MR imaging of pituitary adenoma: a preliminary report. AJNR Am J Neuroradiol 8:817–823

    PubMed  CAS  Google Scholar 

  5. Newton DR, Dillon WP, Norman D, Newton TH, Wilson CB (1989) Gd-DPTA-enhanced MR imaging of pituitary adenomas. AJNR Am J Neuroradiol 10:949–954

    PubMed  CAS  Google Scholar 

  6. Stadnik T, Stevenaert A, Beckers A, Luypaert R, Buisseret T, Osteaux M (1990) Pituitary microadenomas: diagnosis with two-and three-dimensional MR imaging at 1.5 T before and after injection of gadolinium. Radiology 176:419–428

    PubMed  CAS  Google Scholar 

  7. Miki Y, Matsuo M, Nishizawa S, Kuroda Y, Keyaki A, Makita Y, Kawamura (1990) Pituitary adenomas and normal pituitary tissue: enhancement patterns on gadopentetate-enhanced MR imaging. Radiology 177:35–38

    PubMed  CAS  Google Scholar 

  8. Sakamoto Y, Takahashi M, Korogi Y, Bussaka H, Ushio Y (1991) Normal and abnormal pituitary glands: gadopentetate dimeglumine-enhanced MR imaging. Radiology 178:441–445

    PubMed  CAS  Google Scholar 

  9. Finelli DA, Kaufman B (1993) Varied microcirculation of pituitary adenomas at rapid, dynamic, contrast-enhanced MR imaging. Radiology 189:205–210

    PubMed  CAS  Google Scholar 

  10. Elster AD (1993) Modern imaging of the pituitary. Radiology 187:1–14

    PubMed  CAS  Google Scholar 

  11. Yuh WTC, Fisher DJ, Nguyen HD, Tali ET, Gao F, Simonson TM, Schlechte JA (1994) Sequential MR enhancement pattern in normal pituitary gland and in pituitary adenoma. AJNR Am J Neuroradiol 15:101–108

    PubMed  CAS  Google Scholar 

  12. Kucharczyk W, Bishop JE, Plewes DB, Keller MA, George S (1994) Detection of pituitary microadenomas: comparison of dynamic keyhole fast spin-echo, unenhanced, and conventional contrast-enhanced MR imaging. AJR Am J Roentgenol 163:671–679

    PubMed  CAS  Google Scholar 

  13. Rand T, Kink E, Sator M, Schneider B, Huber J, Imhof H, Trattnig S (1996) MRI of microadenomas in patients with hyperprolactinaemia. Neuroradiology 38:744–746

    Article  PubMed  CAS  Google Scholar 

  14. Bartynski WS, Lin L (1997) Dynamic and conventional spin-echo MR of pituitary microlesions. AJNR Am J Neuroradiol 18:965–972

    PubMed  CAS  Google Scholar 

  15. Buchfelder M, Nistor R, Fahlbusch R, Huk WJ (1992) The accuracy of CT and MR evaluation of the sella turcica for detection of adrenocorticotropic hormone-secreting adenomas in Cushing disease. AJNR Am J Neuroradiol 14:1183–1190

    Google Scholar 

  16. Colombo N, Loli P, Vignati F, Scialfa G (1994) MR of corticotropin-secreting pituitary microadenomas. AJNR Am J Neuroradiol 15:1591–1595

    PubMed  CAS  Google Scholar 

  17. Stadnik T, Spruyt D, van Binst A, Luypaert R, d’Haens J, Osteaux M (1994) Pituitary microadenomas: diagnosis with dynamic serial CT, conventional CT and T1-weighted MR imaging before and after injection of gadolinium. Eur J Radiol 18:191–198

    Article  PubMed  CAS  Google Scholar 

  18. Tabarin A, Catargi B, Lescene R, Berge J, SanGallis F, Drouillard J, Roger P, Guerin J (1998) Comparative evaluation of conventional and dynamic magnetic resonance imaging of the pituitary gland for the diagnosis of Cushing’s disease. Clin Endocrinol 49:293–300

    Article  CAS  Google Scholar 

  19. Gao R, Isoda H, Tanaka T, Inagawa S, Takeda H, Takehara Y, Isogai S, Sakahara H (2001) Dynamic gadolinium-enhanced MR imaging of pituitary adenomas: usefulness of sequential sagittal and coronal plane images. Eur J Rad 39:139–146

    Article  CAS  Google Scholar 

  20. Rand T, Lippitz P, Kink E, Huber H, Schneider B, Imhof H, Trattnig S (2002) Evaluation of pituitary microadenomas with dynamic MR imaging. Eur J Radiol 41:131–135

    Article  PubMed  Google Scholar 

  21. Patronas N, Bulakbasi N, Stratakis CA, Lafferty A, Oldfield EH, Doppman J, Nieman LK (2003) Spoiled gradient recalled acquisition in the steady state technique is superior to conventional postcontrast spin echo technique for magnetic resonance imaging detection of adrenocorticotropin-secreting pituitary tumors. J Clin Endocrinol Metab 88(4):1565–1569

    Article  PubMed  CAS  Google Scholar 

  22. Hagiwara A, Inoue Y, Wakasa K, Haba T, Tashiro T, Miyamoto T (2003) Comparison of growth hormone-producing and non-growth hormone-producing pituitary adenomas: imaging characteristics and pathologic correlation. Radiology 228(2):533–538

    Article  PubMed  Google Scholar 

  23. Niendorf HP, Laniado M, Semmler W, Schorner W, Felix W (1987) Dose administration of gadolinium-DTPA in MR imaging of intracranial tumors. AJNR Am J Neuroradiol 8:803–815

    PubMed  CAS  Google Scholar 

  24. Claussen C, Laaniado M, Schorner W, Niendorf HP, Weinmann HJ, Feigler W, Felix R (1985) Gadolinium-DTPA in MR imaging of glioblastomas and intracranial metastases. AJNR Am J Neuroradiol 6:669–674

    PubMed  CAS  Google Scholar 

  25. Evelhoch JL (1999) Key factors in the acquisition of contrast kinetic data for oncology. J Magn Reson Imaging 10:254–259

    Article  PubMed  CAS  Google Scholar 

  26. Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knoop MV, Larsson HBW, Lee TY, Mayr NA, Parker GJM, Port RE, Taylor J, Weisskoff RM (1999) Estimating kinetic parameters from dynamic contrast-enhanced T1-weighted MRI of a diffusible tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232

    Article  Google Scholar 

  27. Dwyer AJ, Frank JA, Doppman JL, Oldfield EH, Hickey AM, Cutler GB, Loriaux DL, Schiable TF (1987) Pituitary adenomas in patients with Cushing disease: initial experience with Gd-DTPA-enhanced MR Imaging. Radiology 163:421–426

    PubMed  CAS  Google Scholar 

  28. Doppman JL, Frank JA, Dwyer AJ, Oldfield EH, Miller DL, Nieman LK, Chrousos GP, Cutler GB Jr, Loriaux DL (1988) Gadolinium DTPA enhanced MR imaging of ACTH-secreting microadenomas of the pituitary gland. J Comput Assist Tomogr 12(5):728–735

    Article  PubMed  CAS  Google Scholar 

  29. Peck WW, Dillon WP, Norman D, Newton TH, Wilson CB (1988) High-resolution MR imaging of microadenomas at 1.5 T: experience with Cushing disease. AJNR Am J Neuroradiol 9:1085–1091

    Google Scholar 

  30. Chambers EF, Turski PA, LaMasters D, Newton TH (1982) Regions of low density in the contrast-enhanced pituitary gland: normal and pathologic processes. Radiology 144:109–113

    PubMed  CAS  Google Scholar 

  31. Hemminghytt S, Kalkhoff RK, Daniels DL, Williams AL, Grogan JP, Haughton VM (1982) Computed tomographic study of hormone secreting microadenomas. Radiology 146:65–69

    Google Scholar 

  32. Bonneville JF, Cattin F, Moussa-Bacha K, Portha C (1983) Dynamic computed tomography of the pituitary gland: the “tuft sign”. Radiology 149:145–148

    PubMed  CAS  Google Scholar 

  33. Bonneville JF, Cattin F, Gorczyca W, Hardy J (1993) Pituitary microadenomas: early enhancement with dynamic CT-implications of arterial blood supply and potential importance. Radiology 187:857–861

    PubMed  CAS  Google Scholar 

  34. Abe T, Izumiyama H, Fujisawa I (2002) Evaluation of pituitary adenomas by multidirectional multislice dynamic CT. Acta Radiol 43:556–559

    Article  PubMed  CAS  Google Scholar 

  35. Davis PC, Gokhale KA, Gregory JJ, Peterman SB, Adams DD, Tindall GT, Hudgins PA, Hoffman JC (1991) Pituitary adenoma: correlation of half-dose gadolinium-enhanced MR imaging with surgical findings in 26 patients. Radiology 180:779–784

    PubMed  CAS  Google Scholar 

  36. Giacometti AR, Joseph GJ, Peterson JE, Davis PC (1993) Comparison of full- and half-dose gadolinium-DTPA: MR imaging of the normal sella. AJNR Am J Neuroradiol 14:123–127

    PubMed  CAS  Google Scholar 

  37. Fahlbusch R, Thapar K (1999) New developments in pituitary surgical techniques. Baillieres Clin Endocrinol Metab 13(3):471–484

    Article  CAS  Google Scholar 

  38. Clayton RM, Stewart PM, Shalet SM, Wass JAH (1999) Pituitary surgery for acromegaly should be done by specialists. BMJ 319:588–589

    PubMed  CAS  Google Scholar 

  39. Tyrrell JB, Lamborn KR, Hannegan LT, Applebury CB, Wilson CB (1999) Transsphenoidal microsurgical therapy of prolactinomas: initial outcomes and long-term results. Neurosurgery 44(2):254–263

    Article  PubMed  CAS  Google Scholar 

  40. Serri O, Rasio E, Beauregard H, Hardy J, Somma M (1983) Recurrence of hyperprolactinemia after selective transsphenoidal adenomectomy in women with prolactinoma. N Engl J Med 309:280–283

    Article  PubMed  CAS  Google Scholar 

  41. Hubbard JL, Scheithauer BW, Abboud CF, Laws ER (1987) Prolactin-secreting adenomas: the preoperative response to bromocriptine treatment and surgical outcome. J Neurosurg 67:816–821

    PubMed  CAS  Google Scholar 

  42. Schlechte J, Dolan K, Sherman B, Chapler F, Luciano A (1989) The natural history of untreated hyperprolactinemia: a prospective analysis. J Clin Endocrinol Metab 68(2):412–418

    Article  PubMed  CAS  Google Scholar 

  43. Sarlis NJ, Gourgiotis L, Koch CA, Skarulis MC, Bruker-Davis F, Doppman JL, Oldfield EH, Patronas NJ (2003) MR imaging features of thyrotropin-secreting pituitary adenomas at initial presentation. AJR Am J Roentgenol 181:577–582

    PubMed  Google Scholar 

  44. Pellegrini I, Rasolonjanahary R, Gunz G, Bertrand P, Delivet S, Jedynak CP, Kordon C, Peillon F, Jaquet P, Enjalbert A (1989) Resistance to bromocriptine in prolactinomas. J Clin Endocrinol Metab 69(3):500–509

    PubMed  CAS  Google Scholar 

  45. Molitch ME (1999) Medical treatment of prolactinomas. Endocrinol Metab Clin North Am 28(1):143–169

    Article  PubMed  CAS  Google Scholar 

  46. Ciccarelli E, Ghigo E, Miola C, Gandini G, Muller EE, Camanni F (1990) Long term follow-up of ‘cured’ prolactinoma patients after successful adenomectomy. Clin Endocrinol 32:583–592

    Article  CAS  Google Scholar 

  47. Parent AD, Bebin J, Smith RR (1981) Incidental pituitary adenomas. J Neurosurg 51:228–231

    Google Scholar 

  48. Burrow GN, Wortzman G, Rewcastle NB, Holgate RC, Kovacs K (1981) Microadenomas of the pituitary and abnormal sella tomograms in an unselected autopsy series. N Engl J Med 304:156–158

    Article  PubMed  CAS  Google Scholar 

  49. Muhr C, Bergstrom K, Grimelius L, Larsson SG (1981) A parallel study of the roentgen anatomy of the sella turcica and histopathology of the pituitary gland in 205 autopsy specimens. Neuroradiology 21:55–65

    Article  PubMed  CAS  Google Scholar 

  50. Hall WA, Luciano MG, Doppman JL, Patronas NJ, Oldfield EH (1994) Pituitary magnetic resonance imaging in normal volunteers: occult adenomas in the general population. Ann Intern Med 120:817–820

    PubMed  CAS  Google Scholar 

  51. Wolfsberger S, Ba-Ssalamah A, Pinker K, Mlynarik V, Czech T, Knosp D, Trattnig S (2004) Application of three-Tesla magnetic resonance imaging for diagnosis and surgery of sella lesions. J Neurosurg 100:278–286

    Article  PubMed  Google Scholar 

  52. Wedeking P, Sotak CH, Telser J, Kumar K, Chang CA, Tweedle MF (1992) Quantitative dependence of MR signal intensity on tissue concentration of Gd(HP-DO3A) in the nephrectomized rat. Magn Res Imaging 10:97–108

    Article  CAS  Google Scholar 

  53. Rinck PA, Muller RN (1999) Field strength and dose dependence of contrast enhancement by gadolinium-based MR contrast agents. Eur Radiol 9:998–1004

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter S. Bartynski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartynski, W.S., Boardman, J.F. & Grahovac, S.Z. The effect of MR contrast medium dose on pituitary gland enhancement, microlesion enhancement and pituitary gland-to-lesion contrast conspicuity. Neuroradiology 48, 449–459 (2006). https://doi.org/10.1007/s00234-006-0085-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-006-0085-0

Keywords

Navigation