Skip to main content
Log in

MRI measurements of the pons and cerebellum in children born preterm; associations with the severity of periventricular leukomalacia and perinatal risk factors

  • Paediatric Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Our purpose was to measure the size of the pons and cerebellum in preterm babies with periventricular leukomalacia (PVL), and to study their relationship with the severity of PVL and with perinatal risk factors. We examined 33  premature children, mean gestational age 31 weeks, range 26–36 weeks with PVL on MRI, and 27 full-term controls. On MRI at 0.4–5.5 years (mean 1.4 years) we measured the area of the corpus callosum and vermis, the anteroposterior diameter of the pons and the volume of the cerebellum. The area of the corpus callosum was used as a marker of white matter loss and PVL severity. All regional brain measurements except that of the vermis were significantly lower in patients than controls: corpus callosum (mm2): 239.6±92.5 vs 434.8±126.8, P <0.01; pons (mm): 14.8±3.0 vs 17.9±1.4, P <0.01]; cerebellum (cm3): 68.2±31.6 vs 100.6±28.3, P <0.01; vermis (mm2): 808.1±292.2 vs 942.2±246.2, NS. Significant reduction in the area of the vermis: 411.3±203.3 vs 935±252.6 mm2; cerebellar volume: 16.3±12.5 vs 96.6±20.2 mm3; and the diameter of the pons: 10.1±2.2 vs 17.5±1.3 mm (P <0.01) were observed in seven children with gestational age ≤28 weeks, severe hypotension and large patent ductus arteriosus (PDA). There was a significant correlation between the duration of mechanical ventilation and the size of the vermis, pons and cerebellum (R=−0.65, −0.57 and −0.73, respectively, P <0.01).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1a, b.
Fig. 2a, b.

Similar content being viewed by others

References

  1. Volpe JJ (2001) Neurobiology of periventricular leukomalacia in the premature infant. Pediatr Res 50: 553–562

    CAS  PubMed  Google Scholar 

  2. De Vries LS (1996) Neurological assessment of the preterm infant. Acta Paediatr 85: 765–766

    PubMed  Google Scholar 

  3. Koeda T, Takeshita K (1992) Visuo-perceptual impairment and cerebral lesions in spastic diplegia with preterm birth. Brain Dev 14: 239–244

    CAS  PubMed  Google Scholar 

  4. Jacobson L, Ek U, Fernell E, Flodmark O, Broberger U (1996) Visual impairment in preterm children with periventricular leukomalacia-visual, cognitive and neuropaediatric characteristics related to cerebral imaging. Dev Med Child Neurol 38: 724–736

    CAS  PubMed  Google Scholar 

  5. Hadders-Algra M, Huisjes HJ, Touwen BC (1988) Perinatal risk factors and minor neurological dysfunction: significance for behavior and school achievement at nine years. Dev Med Child Neurol 30: 482–491

    CAS  PubMed  Google Scholar 

  6. Snider LM (1998) Preschool performance skills of extremely low-birthweight children. Dev Med Child Neurol 40 [Suppl 78]: 27

    Google Scholar 

  7. Huh J, Williams HG, Burke JR (1998) Development of bilateral motor control in children with developmental coordination disorders. Dev Med Child Neurol 40: 474–484

    CAS  PubMed  Google Scholar 

  8. Hall A, McLeod A, Counsell C, Thomson L, Mutch L (1995) School attainment, cognitive ability and motor function in a total Scottish very-low-birthweight population ay eight years: a controlled study. Dev Med Child Neurol 15: 1037–1050

    Google Scholar 

  9. Grunnet ML (1979) Periventricular leukomalacia complex. Arch Pathol Lab Med 103: 6–10

    CAS  PubMed  Google Scholar 

  10. Armstrong DL, Sauls CD, Goddard-Finegold J (1987) Neuropathologic findings in short-term survivors of intra-ventricular hemorrhage. Am J Child 141: 617–621

    CAS  Google Scholar 

  11. Skullerud K, Westre B (1986) Frequency and prognostic significance of germinal matrix hemorrhage, periventricular leukomalacia and pontosubicular necrosis in preterm infants. Acta Neuropathol 70: 257–261

    CAS  PubMed  Google Scholar 

  12. Mercuri E, He J, Curati W, Dubowitz LM, Cowan FM, Bydder GM (1997) Cerebellar infarction and atrophy in infants and children with a history of premature birth. Pediatr Radiol 27: 139–143

    Article  CAS  PubMed  Google Scholar 

  13. Rollins NK, Wen TS, Domínguez R (1995) Crossed cerebellar atrophy in children: a neurologic sequela of extreme prematurity. Pediatr Radiol 25: S20-S25

    PubMed  Google Scholar 

  14. Krägeloh-Mann I, Toft P, Lunding J, Andresen J, Pryds O, Lou HC (1999) Brain lesions in preterms: origin, consequences and compensation. Acta Paediatr 88: 897–908

    Article  PubMed  Google Scholar 

  15. Allin M, Matsumoto H, Santhouse AM, et al (2001) Cognitive and motor function and the size of the cerebellum in adolescents born very pre-term. Brain 124: 60–66

    Article  CAS  PubMed  Google Scholar 

  16. Peterson BS, Vohr B, Staib LH, et al (2000) Regional brain volume abnormalities and long-term cognitive outcome in preterm infants. JAMA 284: 1939–1947

    Article  CAS  PubMed  Google Scholar 

  17. Hayakawa K, Kanda T, Hashimoto K, et al (1996) MR imaging of spastic diplegia. The importance of corpus callosum. Acta Radiol 37: 830–836

    CAS  PubMed  Google Scholar 

  18. Giedd JN, Rumsey JM, Castellanos FX, et al (1996) A quantitative MRI study of the corpus callosum in children and adolescents. Dev Brain Res 91: 274–280

    Article  CAS  Google Scholar 

  19. Barkovich AJ, Kjos BO (1988) Normal postnatal development of the corpus callosum as demonstrated by MR imaging. AJNR 9: 487–491

    CAS  Google Scholar 

  20. Stewart A, Kirkbride V (1996) Very preterm infants at fourteen years: relationship with neonatal ultrasound brain scans and neurodevelopmental status at one year. Acta Paediatr 416: S44–S47

    Google Scholar 

  21. Stewart A, Rifkin L, Amess PN, et al (1999) Brain structure and neurocognitive and behavioural function in adolescents who were born very preterm. Lancet 353: 1653–1657

    Article  CAS  PubMed  Google Scholar 

  22. Paneth N, Rudelli R, Monte W, et al (1990) White matter necrosis in very low birth weight infants; neuropathologic and ultrasonographic findings in infants surviving six days or longer. J Pediatr 116: 975–984

    CAS  PubMed  Google Scholar 

  23. Berry M, Bannister LH, Standring, SM (1995) Nervous system. In: Williams PL (ed) Gray's anatomy, 38th edn. Churchill Livingstone, Edinburgh, pp 901–1395

  24. Sohma O, Mito T, Mizuguchi M, Takashima S (1995) The prenatal age critical for the development of the pontosubicular necrosis. Acta Neuropathol (Berl) 90: 7–10

    Google Scholar 

  25. Johnston MV (1998) Selective vulnerability in the neonatal brain. Ann Neurol 44: 155–156

    Google Scholar 

  26. Jacobson M (1991) Developmental neurobiology, 3rd edn. Plenum Press, New York, pp 14–18

  27. Huang CC, Liu CC (1993) The differences in growth of cerebellar vermis between appropriate-for-gestational-age and small-for-gestational-age newborns. Early Hum Dev 33: 9–19

    CAS  PubMed  Google Scholar 

  28. Tsuru A, Mizuguchi M, Takashima S (1995) Cystic leukomalacia in the cerebellar folia of premature infants. Acta Neuropathol 90: 400–402

    Article  CAS  PubMed  Google Scholar 

  29. Yanowitz TD, Yao AC, Pettigrew KD, Werner JC, OH W, Stonestreet BS (1999) Postnatal hemodynamic changes in very-low-birthweight infants. J Appl Physiol 87: 370–380

    CAS  PubMed  Google Scholar 

  30. Calkins H, Seifert M, Morady F (1995) Clinical presentation and long-term follow-up of athletes with exercise-induced vasodepressor syncope. Am Heart J 129: 1159–1164

    CAS  PubMed  Google Scholar 

  31. Weir FJ, Ohlsson A, Myhr TL, Fong K, Ryan ML (1999) A patent ductus arteriosus is associated with reduced middle cerebral artery blood flow velocity. Eur J Pediatr 158: 484–487

    Article  CAS  PubMed  Google Scholar 

  32. Barth PG (1993) Pontocerebellar hypoplasias. An overview of a group of inherited neurodegenerative disorders with fetal onset. Brain Dev 15: 411–412

    Article  CAS  PubMed  Google Scholar 

  33. Chaves-Vischer V, Pizzolato GP, Hanquinet S, Maret A, Bottani A, Haenggeli CA (2000) Early fatal pontocerebellar hypoplasia in premature twin sisters. Eur J Paediatr Neurol 4: 171–176

    Article  CAS  PubMed  Google Scholar 

  34. Mitra AG, Salvino AR, Spence JE (1999) Prenatal diagnosis of fatal infantile olivopontocerebellar hypoplasia syndrome. Prenat Diagn 19: 375–378

    Article  CAS  PubMed  Google Scholar 

  35. Hashimoto K, Takeuchi Y, Kida Y, et al (1998) Three siblings of fatal infantile encephalopathy with olivopontocerebellar hypoplasia and microcephaly. Brain Dev 20: 169–174

    Article  CAS  PubMed  Google Scholar 

  36. Murphy DJ, Hope PL, Johnson A (1997) Neonatal factors for cerebral palsy in very preterm babies: case-control study. Br Med J 314: 404–408

    CAS  Google Scholar 

  37. Sinha SK, D'Souza SW, Rivlin E, Chiswick ML (1990) Ischaemic brain lesions diagnosed at birth in preterm infants: clinical events and developmental outcome. Arch Dis Child 65: 1017–1020

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Argyropoulou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Argyropoulou, M.I., Xydis, V., Drougia, A. et al. MRI measurements of the pons and cerebellum in children born preterm; associations with the severity of periventricular leukomalacia and perinatal risk factors. Neuroradiology 45, 730–734 (2003). https://doi.org/10.1007/s00234-003-1067-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-003-1067-0

Keywords

Navigation