Skip to main content

Advertisement

Log in

Cholesterol in GPCR Structures: Prevalence and Relevance

  • Brief Communication
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Bound cholesterol molecules are emerging as important hallmarks of GPCR structures. In this commentary, we analyze their statistical prevalence and biological relevance.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Augustyn B, Stepien P, Poojari C et al (2019) Cholesteryl hemisuccinate is not a good replacement for cholesterol in lipid nanodiscs. J Phys Chem B 123:9839–9845

    Article  CAS  PubMed  Google Scholar 

  • Caffrey M (2015) A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes. Acta Crystallogr F Struct Biol Commun 71:3–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan HCS, Li Y, Dahoun T, Vogel H, Yuan S (2019) New binding sites, new opportunities for GPCR drug discovery. Trends Biochem Sci 44:312–330

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay A (2014) GPCRs: lipid-dependent membrane receptors that act as drug targets. Adv Biol 2014:143023

    Article  Google Scholar 

  • Cherezov V, Rosenbaum DM, Hanson MA et al (2007) High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318:1258–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Day PW, Rasmussen SGF, Parnot C et al (2007) A monoclonal antibody for G protein-coupled receptor crystallography. Nat Methods 4:927–929

    Article  CAS  PubMed  Google Scholar 

  • Epand RM (2006) Cholesterol and the interaction of proteins with membrane domains. Prog Lipid Res 45:279–294

    Article  CAS  PubMed  Google Scholar 

  • Fantini J, Barrantes FJ (2013) How cholesterol interacts with membrane proteins: an exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains. Front Physiol 4:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fantini J, Di Scala C, Baier CJ, Barrantes FJ (2016) Molecular mechanisms of protein-cholesterol interactions in plasma membranes: functional distinction between topological (tilted) and consensus (CARC/CRAC) domains. Chem Phys Lipids 199:52–60

    Article  CAS  PubMed  Google Scholar 

  • Filipek S (2019) Molecular switches in GPCRs. Curr Opin Struct Biol 55:114–120

    Article  CAS  PubMed  Google Scholar 

  • Ghosh E, Kumari P, Jaiman D, Shukla AK (2015) Methodological advances: the unsung heroes of the GPCR structural revolution. Nat Rev Mol Cell Biol 16:69–81

    Article  CAS  PubMed  Google Scholar 

  • Gimpl G (2016) Interaction of G protein coupled receptors and cholesterol. Chem Phys Lipids 199:61–73

    Article  CAS  PubMed  Google Scholar 

  • Goddard AD, Watts A (2012) Regulation of G protein-coupled receptors by palmitoylation and cholesterol. BMC Biol 10:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grisshammer R (2020) The quest for high-resolution G protein-coupled receptor-G protein structures. Proc Natl Acad Sci USA 117:6971–6973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanson MA, Cherezov V, Griffith MT et al (2008) A specific cholesterol binding site is established by the 2.8 Å structure of the human β2-adrenergic receptor. Structure 16:897–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Insel PA, Sriram K, Gorr MW et al (2019) GPCRomics: an approach to discover GPCR drug targets. Trends Pharmacol Sci 40:378–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jafurulla M, Chattopadhyay A (2013) Membrane lipids in the function of serotonin and adrenergic receptors. Curr Med Chem 20:47–55

    Article  CAS  PubMed  Google Scholar 

  • Jafurulla M, Tiwari S, Chattopadhyay A (2011) Identification of cholesterol recognition amino acid consensus (CRAC) motif in G-protein coupled receptors. Biochem Biophys Res Commun 404:569–573

    Article  CAS  PubMed  Google Scholar 

  • Jafurulla M, Kumar GA, Rao BD, Chattopadhyay A (2019) A critical analysis of molecular mechanisms underlying membrane cholesterol sensitivity of GPCRs. Adv Exp Med Biol 1115:21–52

    Article  CAS  PubMed  Google Scholar 

  • Jakubík J, El-Fakahany EE (2021) Allosteric modulation of GPCRs of class A by cholesterol. Int J Mol Sci 22:1953

    Article  PubMed  PubMed Central  Google Scholar 

  • Katritch V, Cherezov V, Stevens RC (2012) Diversity and modularity of G protein-coupled receptor structures. Trends Pharmacol Sci 33:17–27

    Article  CAS  PubMed  Google Scholar 

  • Kharche S, Joshi M, Chattopadhyay A, Sengupta D (2021) Conformational plasticity and dynamic interactions of the N-terminal domain of chemokine receptor CXCR1. PLoS Comput Biol 17:e1008593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khelashvili G, Albornoz PBC, Johner N, Mondal S, Caffrey M, Weinstein H (2012) Why GPCRs behave differently in cubic and lamellar lipidic mesophases. J Am Chem Soc 134:15858–15868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiriakidi S, Kolocouris A, Liapakis G, Ikram S, Durdagi S, Mavromoustakos T (2019) Effects of cholesterol on GPCR function: insights from computational and experimental studies. Adv Exp Med Biol 1135:89–103

    Article  CAS  PubMed  Google Scholar 

  • Kulig W, Tynkkynen J, Javanainen M et al (2014) How well does cholesteryl hemisuccinate mimic cholesterol in saturated phospholipid bilayers? J Mol Model 20:2121

    Article  PubMed  Google Scholar 

  • Kulig W, Jurkiewicz P, Olzyńska A et al (2015) Experimental determination and computational interpretation of biophysical properties of lipid bilayers enriched by cholesteryl hemisuccinate. Biochim Biophys Acta 1848:422–432

    Article  CAS  PubMed  Google Scholar 

  • Kumar GA, Chattopadhyay A (2016) Cholesterol: an evergreen molecule in biology. Biomed Spectrosc Imaging 5:S55–S66

    Article  Google Scholar 

  • Kumar GA, Chattopadhyay A (2020) Statin-induced chronic cholesterol depletion switches GPCR endocytosis and trafficking: insights from the serotonin1A receptor. ACS Chem Neurosci 11:453–465

    Article  CAS  PubMed  Google Scholar 

  • Kumar GA, Chattopadhyay A (2021) Membrane cholesterol regulates endocytosis and trafficking of the serotonin1A receptor: insights from acute cholesterol depletion. Biochim Biophys Acta 1866:158882

    Article  CAS  Google Scholar 

  • Kumar GA, Sarkar P, Stepniewski TM, Jafurulla M, Singh SP, Selent J, Chattopadhyay A (2021) A molecular sensor for cholesterol in the human serotonin1A receptor. Sci Adv 7:eabh2922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latorraca NR, Venkatakrishnan AJ, Dror RO (2017) GPCR dynamics: structures in motion. Chem Rev 117:139–155

    Article  CAS  PubMed  Google Scholar 

  • Lee AG (2019) Interfacial binding sites for cholesterol on G protein-coupled receptors. Biophys J 116:1586–1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Papadopoulos V (1998) Peripheral-type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus pattern. Endocrinology 139:4991–4997

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Chun E, Thompson AA et al (2012) Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337:232–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manglik A, Kobilka BK, Steyaert J (2017) Nanobodies to study G protein-coupled receptor structure and function. Annu Rev Pharmacol Toxicol 57:19–37

    Article  CAS  PubMed  Google Scholar 

  • Mouritsen OG, Zuckermann MJ (2004) What’s so special about cholesterol? Lipids 39:1101–1113

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Chattopadhyay A (1994) Motionally restricted tryptophan environments at the peptide lipid interface of gramicidin channels. Biochemistry 33:5089–5097

    Article  CAS  PubMed  Google Scholar 

  • Oates J, Watts A (2011) Uncovering the intimate relationship between lipids, cholesterol and GPCR activation. Curr Opin Struct Biol 21:802–807

    Article  CAS  PubMed  Google Scholar 

  • Oddi S, Dainese E, Fezza F, Lanuti M, Barcaroli D, De Laurenzi V, Centonze D, Maccarrone M (2011) Functional characterization of putative cholesterol binding sequence (CRAC) in human type-1 cannabinoid receptor. J Neurochem 116:858–865

    Article  CAS  PubMed  Google Scholar 

  • Paila YD, Chattopadhyay A (2010) Membrane cholesterol in the function and organization of G-protein coupled receptors. Subcell Biochem 51:439–466

    Article  CAS  PubMed  Google Scholar 

  • Paila YD, Tiwari S, Chattopadhyay A (2009) Are specific nonannular cholesterol binding sites present in G-protein coupled receptors? Biochim Biophys Acta 1788:295–302

    Article  CAS  PubMed  Google Scholar 

  • Pal S, Chattopadhyay A (2019) Extramembranous regions in G protein-coupled receptors: cinderella in receptor biology? J Membr Biol 252:483–497

    Article  CAS  PubMed  Google Scholar 

  • Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3:639–650

    Article  CAS  PubMed  Google Scholar 

  • Pucadyil TJ, Chattopadhyay A (2006) Role of cholesterol in the function and organization of G-protein coupled receptors. Prog Lipid Res 45:295–333

    Article  CAS  PubMed  Google Scholar 

  • Rosenbaum DM, Cherezov V, Hanson MA et al (2007) GPCR engineering yields high-resolution structural insights into β2-adrenergic receptor function. Science 318:1266–1273

    Article  CAS  PubMed  Google Scholar 

  • Rosenbaum DM, Rasmussen SGF, Kobilka BK (2009) The structure and function of G-protein-coupled-receptors. Nature 459:356–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Safdari HA, Pandey S, Shukla AK, Dutta S (2018) Illuminating GPCR signaling by cryo-EM. Trends Cell Biol 28:591–594

    Article  CAS  PubMed  Google Scholar 

  • Sarkar P, Chattopadhyay A (2020) Cholesterol interaction motifs in G protein-coupled receptors: slippery hot spots? Wiley Interdiscip Rev Syst Biol Med 12:e1481

    Article  CAS  PubMed  Google Scholar 

  • Sengupta D, Chattopadhyay A (2012) Identification of cholesterol binding sites in the serotonin1A receptor. J Phys Chem B 116:12991–12996

    Article  CAS  PubMed  Google Scholar 

  • Sengupta D, Chattopadhyay A (2015) Molecular dynamics simulations of GPCR-cholesterol interaction: an emerging paradigm. Biochim Biophys Acta 1848:1775–1782

    Article  CAS  PubMed  Google Scholar 

  • Sengupta D, Joshi M, Athale CA, Chattopadhyay A (2016) What can simulations tell us about GPCRs: integrating the scales. Methods Cell Biol 132:429–452

    Article  CAS  PubMed  Google Scholar 

  • Sengupta D, Kumar GA, Prasanna X, Chattopadhyay A (2017) Experimental and computational approaches to study membranes and lipid-protein interactions. In: Domene C (ed) Computational biophysics of membrane proteins. Royal Society of Chemistry, London, pp 137–160

    Google Scholar 

  • Sengupta D, Prasanna X, Mohole M, Chattopadhyay A (2018) Exploring GPCR-lipid interactions by molecular dynamics simulations: excitements, challenges, and the way forward. J Phys Chem B 122:5727–5737

    Article  CAS  PubMed  Google Scholar 

  • Shimada I, Ueda T, Kofuku Y et al (2019) GPCR drug discovery: integrating solution NMR data with crystal and cryo-EM structures. Nat Rev Drug Discov 18:59–82

    Article  CAS  PubMed  Google Scholar 

  • Taghon GJ, Rowe JB, Kapolka NJ, Isom DG (2021) Predictable cholesterol binding sites in GPCRs lack consensus motifs. Structure 29:499–506

    Article  CAS  PubMed  Google Scholar 

  • Torrens-Fontanals M, Stepniewski TM, Aranda-García D et al (2020) How do molecular dynamics data complement static structural data of GPCRs. Int J Mol Sci 21:5933

    Article  CAS  PubMed Central  Google Scholar 

  • Torrens-Fontanals M, Stepniewski TM, Gloriam DE, Selent J (2021) Structural dynamics bridge the gap between the genetic and functional levels of GPCRs. Curr Opin Struct Biol 69:150–159

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Ralko A, Ren Z, Rosenhouse-Dantsker A, Yang X (2019) Modes of cholesterol binding in membrane proteins: a joint analysis of 73 crystal structures. Adv Exp Med Biol 1135:67–86

    Article  CAS  PubMed  Google Scholar 

  • Weis WI, Kobilka BK (2018) The molecular basis of G protein-coupled receptor activation. Annu Rev Biochem 87:897–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheatley M, Wootten D, Conner MT, Simms J, Kendrick R, Logan RT, Poyner DR, Barwell J (2012) Lifting the lid on GPCRs: the role of extracellular loops. Br J Pharmacol 165:1688–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wingler LM, Lefkowitz RJ (2020) Conformational basis of G protein-coupled receptor signaling versatility. Trends Cell Biol 30:736–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, Wang C, Gregory KJ et al (2014) Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science 344:58–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu P, Huang S, Zhang H et al (2021) Structural insights into the lipid and ligand regulation of serotonin receptors. Nature 592:469–473

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Zhou Q, Labroska V et al (2021) G protein-coupled receptors: structure- and function-based drug discovery. Signal Transduct Target Ther 6:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, DeVries ME, Skolnick J (2006) Structure modeling of all identified G protein-coupled receptors in the human genome. PLoS Comput Biol 2:e13

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in A.C.’s laboratory has been funded by Department of Biotechnology, Govt. of India, Council of Scientific and Industrial Research, Indo-French Centre for the Promotion of Advanced Research, Life Sciences Research Board (India), University of Melbourne (IRRTF grant), and Science & Engineering Research Board, Department of Science and Technology, Govt. of India. A.C. gratefully acknowledges SERB Distinguished Fellowship (SERB, DST, Govt. of India). P.S. was supported as a Senior Project Associate by a CSIR FBR grant to A.C. We thank members of the Chattopadhyay laboratory for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitabha Chattopadhyay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, P., Chattopadhyay, A. Cholesterol in GPCR Structures: Prevalence and Relevance. J Membrane Biol 255, 99–106 (2022). https://doi.org/10.1007/s00232-021-00197-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-021-00197-8

Keywords

Navigation