Skip to main content
Log in

Supported Planar Single and Multiple Bilayer Formation by DOPC Vesicle Rupture on Mica Substrate: A Mechanism as Revealed by Atomic Force Microscopy Study

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

A planar lipid bilayer on a solid support serves as model system that explains fundamental aspects of membrane biology and enables us to characterize wide-range surface-sensitive techniques, including molecular engineering. The present study aims at understanding the process of single and multiple bilayer formation after the exposure of small unilamellar vesicles (SUVs) of dioleoyl phosphatidylcholine (DOPC) to mica substrate. Isolated single bilayer formation and co-existence of double and triple lipid bilayers in the aqueous medium have been quantitatively measured by atomic force microscopy and discussed the physicochemical mechanism. It has been observed that due to the strong adhesion of DOPC SUV to mica surface, vesicles of diluted solution rupture spontaneously and form isolated bilayer patches when they come in contact with the mica surface. No further lateral growth or movement of the bilayer patches has been observed upon increase of incubation time. However, the increase of vesicle number on the same surface area by successive deposition of DOPC solution of same concentration and increasing incubation time shows merging of the nearby patches as well as development of stacked second and third bilayers due to edge-guided rupture of adsorbed vesicles on first or second bilayer patches. Mechanisms of single and multi-bilayer formation and a theoretical interpretation of the process have been elucidated.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Åkesson A, Lind T, Ehrlich N, Stamou D, Wacklin HP, Cárdenas M (2012) Composition and structure of mixed phospholipid supported bilayers formed by POPC and DPPC. Soft Matter 8:5658–5665

    Article  CAS  Google Scholar 

  • Anderson TH, Min YJ, Weirich KL, Zeng HB, Fygenson D, Israelachvili JN (2009) Formation of supported bilayers on silica substrates. Langmuir 25:6997

    Article  CAS  PubMed  Google Scholar 

  • Andrecka J, Spillane KM, Ortega-Arroyo J, Kukura P (2013) Direct observation and control of supported lipid bilayer formation with interferometric scattering microscopy. ACS Nano 7:10662

    Article  CAS  PubMed  Google Scholar 

  • Attwood SJ, Choi Y, Leonenko Z (2013) Preparation of DOPC and DPPC supported planar lipid bilayers for atomic force microscopy and atomic force spectroscopy. Int J Mol Sci 14:3514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balmer TE, Christenson HK, Spencer ND, Heuberger M (2008) The effect of surface ions on water adsorption to mica. Langmuir 24:566–1569

    Article  CAS  Google Scholar 

  • Bernchou U, Brewer J, Midtiby HS, Ipsen JH, Bagatolli LA, Simonsen AC (2009) Texture of lipid bilayer domains. J Am Chem Soc 131:14130

    Article  CAS  PubMed  Google Scholar 

  • Bhowmik D, Karmakar P (2018) Physicochemical variation of mica surface by low energy ion beam irradiation. Nucl Inst Methods Phys Res B 422:41–46

    Article  CAS  Google Scholar 

  • Bhowmik D, Karmakar P (2019) Tailoring and investigation of surface chemical nature of virgin and ion beam modified muscovite mica. Surf Interface Anal 51:667–673

    Article  CAS  Google Scholar 

  • Blodgett KB (1935) Films built by depositing successive monomolecular layers on a solid surface. J Am Chem Soc 57:1007

    Article  CAS  Google Scholar 

  • Cha T, Guo A, Zhu X-Y (2006) Formation of supported phospholipid bilayers on molecular surfaces: role of surface charge density and electrostatic interaction. Biophys J 90:1270–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egawa H, Furusawa K (1999) Liposome adhesion on mica surface studied by atomic force microscopy. Langmuir 15:1660–1666

    Article  CAS  Google Scholar 

  • Gimeno A, Ares P, Horcas I, Gil A, Gomez-Rodriguez JM, Colchero J, Gomez-Herrero J (2015) Flatten plus: a recent implementation in WSxM for biological research. Bioinformatics 31:2918–2920

    Article  CAS  PubMed  Google Scholar 

  • Han X, Achalkumar AS, Cheetham MR, Connell SDA, Johnson BG, Bushby RJ, Evans SD (2010) A self-assembly route for double bilayer lipid membrane formation. Chem Phys Chem 11:569

    Article  CAS  PubMed  Google Scholar 

  • Heath GR, Li M, Polignano IL, Richens JL, Catucci G, O’Shea P, Sadeghi SJ, Gilardi G, Butt JN, Jeuken LJC (2016) Layer-by-layer assembly of supported lipid bilayer poly-l-lysine multilayers. Biomacromolecules 17:324

    Article  CAS  PubMed  Google Scholar 

  • Helfrich W, Servuss R-M (1984) Undulations, steric interaction and cohesion of fluid membranes. Il Nuovo Cim D 3:137–151

    Article  Google Scholar 

  • Hennesthal C, Steinem C (2000) Pore-spanning lipid bilayers visualized by scanning force microscopy. J Am Chem Soc 122:8085–8086

    Article  CAS  Google Scholar 

  • Hope MJ, Bally MB, Webb G, Cullis PR (1985) Production of large unilamellar vesicles by a rapid extrusion procedure: characterization of size, trapped volume and ability to maintain a membrane potential. Biochim Biophys Acta 812:55

    Article  CAS  PubMed  Google Scholar 

  • Israelachvili JN (2011) Intermolecular and surface forces. Academic, Waltham

    Google Scholar 

  • Jass J, Tjärnhage T, Puu G (2000) From liposomes to supported, planar bilayer structures on hydrophilic and hydrophobic surfaces: an atomic force microscopy study. Biophys J 79:3153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen MH, Morris EJ, Simonsen AC (2007) Domain shapes, coarsening, and random patterns in ternary membranes. Langmuir 23:8135–8141

    Article  CAS  PubMed  Google Scholar 

  • Kang M, Tuteja M, Centrone A, Topgaard D, Leal C (2018) Nanostructured lipid-based films for substrate-mediated applications in biotechnology. Adv Funct Mater 28:1704356

    Article  CAS  Google Scholar 

  • Karatekin E, Sandre O, Brochard-Wyart F (2003) Transient pores in vesicles. Polym Int 52:486

    Article  CAS  Google Scholar 

  • Kataoka-Hamai C, Higuchi M, Iwai H, Miyahara Y (2010) Detergent-mediated formation of polymer-supported phospholipid bilayers. Langmuir 26:14600

    Article  CAS  PubMed  Google Scholar 

  • Keller CA, Glasmästar K, Zhdanov VP, Kasemo B (2000) Formation of supported membranes from vesicles. Phys Rev Lett 84:5443

    Article  CAS  PubMed  Google Scholar 

  • Kucerka N, Tristram-Nagle S, Nagle JF (2005) Structure of fully hydrated fluid phase lipid bilayers with monounsaturated chains. J Membr Biol 208:193–202

    Article  CAS  PubMed  Google Scholar 

  • Leonenko ZV, Carnini A, Cramb DT (2000) Supported planar bilayer formation by vesicle fusion: the interaction of phospholipid vesicles with surfaces and the effect of gramicidin on bilayer properties using atomic force microscopy. Biochim Biophys Acta 1509:131–147

    Article  CAS  PubMed  Google Scholar 

  • Lind TK, Wacklin H, Schiller J, Moulin M, Haertlein M, Pomorski TG, Cárdenas M (2015) Formation and characterization of supported lipid bilayers composed of hydrogenated and deuterated Escherichia coli lipids. PLoS ONE 10:e0144671

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lv Z, Banerjee S, Zagorski K, Lynbchenko YL (2018) Supported lipid bilayers for atomic force microscopy studies. Methods Mol Biol 1814:129–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melcrova A, Pokorna S, Cwiklik L (2016) The complex nature of calcium cation interactions with phospholipid bilayers. Sci Rep 6:38035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mornet SP, Lambert O, Duguet E, Brisson A (2005) The formation of supported lipid bilayers on silica nanoparticles revealed by cryoelectron microscopy. Nano Lett 5:281–285

    Article  CAS  PubMed  Google Scholar 

  • Mui BL-S, Cullis PR, Evans EA, Madden TD (1993) Osmotic properties of large unilamellar vesicles prepared by extrusion. Biophys J 64:443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller K, Chang CC (1969) Electric dipoles on clean mica surfaces. Surf Sci 14:39

    Article  Google Scholar 

  • Okamoto Y, Tsuzuki K, Iwasa S, Ishikawa R, Sandhu A, Tero R (2012) Fabrication of supported lipid bilayer on graphene oxide. J Phys Conf Ser 352(01):2017

    Google Scholar 

  • Perino-Gallice L, Fragneto G, Mennicke U, Salditt T, Rieutord F (2002) Dewetting of solid-supported multilamellar lipid layers. Eur Phys J E 8:275

    Article  CAS  PubMed  Google Scholar 

  • Pertsin A, Grunze M (2014) Possible mechanism of adhesion in a mica supported phospholipid bilayer. J Chem Phys 140:184707

    Article  PubMed  CAS  Google Scholar 

  • Raedler J, Strey H, Sackmann E (1995) Phenomenology and kinetics of lipid bilayer spreading on hydrophilic surfaces. Langmuir 11:4539–4548

    Article  CAS  Google Scholar 

  • Reviakine I, Brisson A (2000) Formation of supported phospholipid bilayers from unilamellar vesicles investigated by atomic force microscopy. Langmuir 16:1806

    Article  CAS  Google Scholar 

  • Richter R, Berat R, Brisson AR (2006) Formation of solid-supported lipid bilayers: an integrated view. Langmuir 22:3497

    Article  CAS  PubMed  Google Scholar 

  • Richter R, Mukhopadhyay A, Brisson A (2003) Pathways of lipid vesicle decomposition on solid surfaces: a combined QCM-D and AFM study. Biophys J 85:3035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richter RP, Brisson AR (2005) Following the formation of supported lipid bilayers on mica: a study combining AFM, QCM-D, and ellipsometry. Biophys J 88:3422–3433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schonherr H, Johnson JM, Lenz P, Boxer SG (2004) Vesicle adsorption and lipid bilayer formation on glass studied by atomic force microscopy. Langmuir 20:11600

    Article  PubMed  CAS  Google Scholar 

  • Seifert U, Lipowsky R (1990) Adhesion of vesicles. Phys Rev A 42:4768

    Article  CAS  PubMed  Google Scholar 

  • Sironi B, Snow T, Redeker C, Slastanova A, Bikondoa O, Arnold T, Kleine J, Briscoe WH (2016) Structure of lipid multilayers via drop casting of aqueous liposome dispersions. Soft Matter 12:3877

    Article  CAS  PubMed  Google Scholar 

  • Takáts-Nyeste AA, Derényi I (2014) Development of hat-shaped liposomes on solid supports. Langmuir 30:15261

    Article  PubMed  CAS  Google Scholar 

  • Takáts-Nyeste A, Derényi I (2014) Rupture of lipid vesicles near solid surfaces. Phys Rev E 90:052710

    Article  CAS  Google Scholar 

  • Tanaka M, Tutus M, Kaufmann S, Rossetti FF, Schneck E, Weiss IM (2009) Native supported membranes on planar polymer supports and micro-particle supports. J Struct Biol 168(2009):137–142

    Article  CAS  PubMed  Google Scholar 

  • Tero R, Fukumoto K, Motegi T, Yoshida M, Niwano M, Hirano-Iwata A (2017) Formation of cell membrane component domains in artificial lipid bilayer. Sci Rep 7:17905

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tristram-Nagle SA (2007) Preparation of oriented, fully hydrated lipid samples for structure determination using X-ray scattering. In: Dopico AM (ed) Methods in membrane lipids. Humana Press, Totowa, pp 63–75

  • Verma A, Stellacci F (2009) Effect of surface properties on nanoparticle–cell interactions. Small 6:1–10

    Google Scholar 

  • Vogel M, Münster C, Fenzl W, Salditt T (2000) Thermal unbinding of highly oriented phospholipid membranes. Phys Rev Lett 84:390

    Article  CAS  PubMed  Google Scholar 

  • Wacklin HP (2011) Composition and asymmetry in supported membranes formed by vesicle fusion. Langmuir 27:7698

    Article  CAS  PubMed  Google Scholar 

  • Wacklin HP, Thomas RK (2007) Spontaneous formation of asymmetric lipid bilayers by adsorption of vesicles. Langmuir 23:7644

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wang H, Bi S (2014) Real time drift measurement for colloidal probe atomic force microscope: a visual sensing approach. AIP Adv 4:057130

    Article  CAS  Google Scholar 

  • Weirich KL, Israelachvili JN, Fygenson DK (2010) Bilayer edges catalyze supported lipid bilayer formation. Biophys J 98:85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Negmi A, Moran-Mirabal J (2015) Multi-stacked supported lipid bilayer micropatterning through polymer stencil lift-off. Membranes 5:385–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work has been financially supported DBT funded Research Project (BT/PR8475/BRB/10/1248/2013). The authors are grateful to VECC Kolkata, DAE, Govt. of India for providing AFM Facility to carry out the research. The authors would like to acknowledge Pabitra Maity and Animesh Halder for their help during vesicle preparation and DLS measurements. They specially thank Ms. Sanhita Mukherjee, Arijit Chakrabarty, and Pratibho Karmakar for critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasanta Karmakar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basu, A., Karmakar, P. & Karmakar, S. Supported Planar Single and Multiple Bilayer Formation by DOPC Vesicle Rupture on Mica Substrate: A Mechanism as Revealed by Atomic Force Microscopy Study. J Membrane Biol 253, 205–219 (2020). https://doi.org/10.1007/s00232-020-00117-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-020-00117-2

Keywords

Navigation