Skip to main content

Advertisement

Log in

Mycobacterium tuberculosis Major Facilitator Superfamily Transporters

  • Topical Review
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The cell membrane or biofilm serve as permeable barrier for xenobiotics to maintain the homeostasis of cells or bacterial community. Transport systems are essential for the uptake of nutrients and substances necessary for biofilm formation, efflux of deleterious compounds, as well as communication between cells and environment. Major facilitator superfamily (MFS) represents the largest secondary transporter family and is responsible for the transport of a broad spectrum of substrates with diverse physiochemical properties by utilizing the energy stored in electrochemical gradient across the membrane. Importantly, multidrug efflux pumps belonging to the major facilitator superfamily are important contributing factors to drug resistance and biofilm formation in many clinical strains like Mycobacterium tuberculosis. This review summarized the structural properties and functions of M. tuberculosis MFS transporters, molecular mechanisms of substrates transfer, and efflux pump inhibitors for better control of biofilm-associated infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S (2003) Structure and mechanism of the lactose permease of Escherichia coli. Science 301:610–615

    Article  CAS  PubMed  Google Scholar 

  • Amon J, Titgemeyer F, Burkovski A (2008) A genomic view on nitrogen metabolism and nitrogen control in mycobacteria. J Mol Microbiol Biotechnol 17:20

    Article  PubMed  CAS  Google Scholar 

  • Balganesh M, Dinesh N, Sharma S, Kuruppath S, Nair AV, Sharma U (2012) Efflux pumps of Mycobacterium tuberculosis play a significant role in antituberculosis activity of potential drug candidates. Antimicrob Agents Chemother 56:2643–2651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett RW, Chernov-Rogan T, Cundy KC, Dower WJ, Gallop M (2002) Substrates and screening methods for transport proteins. US patent 6,777,399, 4 Feb 2002

  • Baugh S, Ekanayaka AS, Piddock LJV, Webber MA (2012) Loss of or inhibition of all multidrug resistance efflux pumps of Salmonella enterica serovar Typhimurium results in impaired ability to form a biofilm. J Antimicrob Chemother 67:2409–2417

    Article  CAS  PubMed  Google Scholar 

  • Bizerra FC, Nakamura CV, De Poersch C, Borsato Quesada RM, Goldenberg S, Krieger MA, Yamadaogatta SF (2008) Characteristics of biofilm formation by Candida tropicalis and antifungal resistance. FEMS Yeast Res 8:442

    Article  CAS  PubMed  Google Scholar 

  • Ceruso M, Fratamico P, Chirollo C, Taglialatela R, Cortesi ML, Pepe T (2014) The capacity of listeria monocytogenes mutants with in-frame deletions in putative atp-binding cassette transporters to form biofilms and comparison with the wild type. Ital J Food Saf 3:1657

    PubMed  PubMed Central  Google Scholar 

  • Chan YY, Chua KL (2005) The Burkholderia pseudomallei BpeAB-OprB efflux pump: expression and impact on quorum sensing and virulence. J Bacteriol 187:4707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chernyaeva EN, Shulgina MV, Rotkevich MS, Dobrynin PV, Simonov SA, Shitikov EA, Ischenko DS, Karpova IY, Kostryukova ES, Ilina EN (2014) Genome-wide Mycobacterium tuberculosis variation (GMTV) database: a new tool for integrating sequence variations and epidemiology. BMC Genomics 15:308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Condemine G (2000) Characterization of SotA and SotB, two Erwinia chrysanthemi proteins which modify isopropyl-beta-d-thiogalactopyranoside and lactose induction of the Escherichia coli lac promoter. J Bacteriol 182:1340–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danchin A (2009) Cells need safety valves. Bioessays 31:769–773

    Article  CAS  PubMed  Google Scholar 

  • Dang S, Sun L, Huang Y, Lu F, Liu Y, Gong H, Wang J, Yan N (2010a) Structure of a fucose transporter in an outward-open conformation. Nature 467:734

    Article  CAS  PubMed  Google Scholar 

  • Dang S, Sun L, Huang Y, Lu F, Liu Y, Gong H, Wang J, Yan N (2010b) Structure of a fucose transporter in an outward-open conformation. Nature 467:734–738

    Article  CAS  PubMed  Google Scholar 

  • Deng D, Xu C, Sun P, Wu J, Yan C, Hu M, Yan N (2014a) Crystal structure of the human glucose transporter GLUT1. Nature 510:121–125

    Article  CAS  PubMed  Google Scholar 

  • Deng J, Bi L, Zhou L, Guo SJ, Fleming J, Jiang HW, Zhou Y, Gu J, Zhong Q, Wang ZX (2014b) Mycobacterium tuberculosis proteome microarray for global studies of protein function and immunogenicity. Cell Rep 9:2317

    Article  CAS  PubMed  Google Scholar 

  • Dias PJ, Seret ML, Goffeau A, Correia IS, Baret PV (2010) Evolution of the 12-spanner drug:H+ antiporter DHA1 family in hemiascomycetous yeasts. Omics J Integr Biol 14:701–710

    Article  CAS  Google Scholar 

  • Dieck ST, Heuer H, Ehrchen J, Otto C, Bauer K (1999) The peptide transporter PepT2 is expressed in rat brain and mediates the accumulation of the fluorescent dipeptide derivative beta-Ala-Lys-Nepsilon-AMCA in astrocytes. Glia 25:10–20

    Article  CAS  PubMed  Google Scholar 

  • Doki S, Kato HE, Solcan N, Iwaki M, Koyama M, Hattori M, Iwase N, Tsukazaki T, Sugita Y, Kandori H (2013) Structural basis for dynamic mechanism of proton-coupled symport by the peptide transporter POT. Proc Natl Acad Sci 110:11343–11348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ethayathulla AS, Yousef MS, Amin A, Leblanc G, Kaback HR, Lan G (2014) Structure-based mechanism for Na+/melibiose symport by MelB. Nat Commun 5:3009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fluman N, Bibi E (2009) Bacterial multidrug transport through the lens of the major facilitator superfamily. Biochem Biophys Acta 1794:738

    CAS  PubMed  Google Scholar 

  • Gartner JJ, Parker SC, Prickett TD, Dutton-Regester K, Stitzel ML, Lin JC, Davis S, Simhadri VL, Jha S, Katagiri N (2013) Whole-genome sequencing identifies a recurrent functional synonymous mutation in melanoma. Proc Natl Acad Sci 110:13481–13486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giffin MM, Raab RW, Morganstern M, Sohaskey CD (2012) Mutational analysis of the respiratory nitrate transporter NarK2 of Mycobacterium tuberculosis. PLoS ONE 7:e45459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta AK, Katoch VM, Chauhan DS, Sharma R, Singh M, Venkatesan K, Sharma VD (2010a) Microarray analysis of efflux pump genes in multidrug-resistant Mycobacterium tuberculosis during stress induced by common anti-tuberculous drugs. Microb Drug Resist 16:21–28

    Article  CAS  PubMed  Google Scholar 

  • Gupta AK, Reddy VP, Lavania M, Chauhan D, Venkatesan K, Sharma V, Tyagi A, Katoch V (2010b) jefA (Rv2459), a drug efflux gene in Mycobacterium tuberculosis confers resistance to isoniazid & ethambutol. Indian J Med Res 132:176–188

    CAS  PubMed  Google Scholar 

  • Hassan KA, Brzoska AJ, Wilson NL, Eijkelkamp BA, Brown MH, Paulsen IT (2011) Roles of DHA2 family transporters in drug resistance and iron homeostasis in Acinetobacter spp. J Mol Microbiol Biotechnol 20:116–124

    Article  CAS  PubMed  Google Scholar 

  • He Z, Ma Y, Pu L, Li X (2016) Multidrug resistance operon emrAB contributes for chromate and ampicillin co-resistance in a Staphylococcus strain isolated from refinery polluted river bank. Springerplus 5:1648

    Article  CAS  Google Scholar 

  • Henderson P, Maiden M (1990) Homologous sugar transport proteins in Escherichia coli and their relatives in both prokaryotes and eukaryotes. Philos Trans R Soc Lond B 326:391–410

    Article  CAS  Google Scholar 

  • Herzberg M, Kaye IK, Peti W, Wood TK (2006) YdgG (TqsA) controls biofilm formation in Escherichia coli K-12 through autoinducer 2 transport. J Bacteriol 188:587–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirakata Y, Srikumar R, Poole K, Gotoh N, Suematsu T, Kohno S, Kamihira S, Hancock RE, Speert DP (2002) Multidrug efflux systems play an important role in the invasiveness of Pseudomonas aeruginosa. J Exp Med 196:109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honma K, Ruscitto A, Frey AM, Stafford GP, Sharma A (2016) Sialic acid transporter NanT participates in Tannerella forsythia biofilm formation and survival on epithelial cells. Microb Pathog 94:12–20

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Lemieux MJ, Song J, Auer M, Wang DN (2003) Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301:616–620

    Article  CAS  PubMed  Google Scholar 

  • Hvorup RN Jr, Saier MH (2002) Sequence similarity between the channel-forming domains of voltage-gated ion channel proteins and the C-terminal domains of secondary carriers of the major facilitator superfamily. Microbiology 148:3760

    Article  CAS  PubMed  Google Scholar 

  • Iancu CV, Zamoon J, Woo SB, Aleshin A, Choe J-Y (2013) Crystal structure of a glucose/H+ symporter and its mechanism of action. Proc Natl Acad Sci 110:17862–17867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang D, Zhao Y, Wang X, Fan J, Heng J, Liu X, Feng W, Kang X, Huang B, Liu J (2013) Structure of the YajR transporter suggests a transport mechanism based on the conserved motif A. Proc Natl Acad Sci USA 110:14664–14669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalkandelen KT, Doluca DM (2015) Investigation of mutations in transcription factors of efflux pump genes in fluconazole-resistant Candida albicans strains overexpressing the efflux pumps. Mikrobiyol. bul. 49:609–618

    Article  PubMed  Google Scholar 

  • Kim S-Y, Lee B-S, Shin SJ, Kim H-J, Park J-K (2008) Differentially expressed genes in Mycobacterium tuberculosis H37Rv under mild acidic and hypoxic conditions. J Med Microbiol 57:1473–1480

    Article  CAS  PubMed  Google Scholar 

  • Kvist M, Hancock V, Klemm P (2008) Inactivation of efflux pumps abolishes bacterial biofilm formation. Appl Environ Microbiol 74:7376–7382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Law CJ, Maloney PC, Wang D-N (2008) Ins and outs of major facilitator superfamily antiporters. Annu Rev Microbiol 62:289–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Sands ZA, Biggin PC (2016) A numbering system for MFS transporter proteins. Front Mol Biosci 3:21

    PubMed  PubMed Central  Google Scholar 

  • Lemieux MJ, Song J, Kim MJ, Huang Y, Villa A, Auer M, Li XD, Wang DN (2003) Three-dimensional crystallization of the Escherichia coli glycerol-3-phosphate transporter: a member of the major facilitator superfamily. Protein Sci 12:2748–2756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemieux MJ, Huang Y, Wang D-N (2004a) The structural basis of substrate translocation by the Escherichia coli glycerol-3-phosphate transporter: a member of the major facilitator superfamily. Curr Opin Struct Biol 14:405–412

    Article  CAS  PubMed  Google Scholar 

  • Lemieux MJ, Huang Y, Wang DN (2004b) The structural basis of substrate translocation by the Escherichia coli glycerol-3-phosphate transporter: a member of the major facilitator superfamily. Curr Opin Struct Biol 14:405

    Article  CAS  PubMed  Google Scholar 

  • Li X-Z, Zhang L, Nikaido H (2004) Efflux pump-mediated intrinsic drug resistance in Mycobacterium smegmatis. Antimicrob Agents Chemother 48:2415–2423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Zhang J, Guo Q, Jiang Y, Wei J, Zhao LL, Zhao X, Lu J, Wan K (2015a) Efflux pump gene expression in multidrug-resistant Mycobacterium tuberculosis clinical isolates. PLoS ONE 10:e0119013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li G, Zhang J, Guo Q, Wei J, Jiang Y, Zhao X, Zhao LL, Liu Z, Lu J, Wan K (2015b) Study of efflux pump gene expression in rifampicin-monoresistant Mycobacterium tuberculosis clinical isolates. J Antibiot 68:431–435

    Article  CAS  PubMed  Google Scholar 

  • Li XZ, Elkins CA, Zgurskaya HI (2016) Efflux-mediated antimicrobial resistance in bacteria. Adis. doi:10.1007/978-3-319-39658-3

    Google Scholar 

  • Li H, Wang Q, Wang R, Zhang Y, Wang X, Wang H (2017) Global regulator SoxR is a negative regulator of efflux pump gene expression and affects antibiotic resistance and fitness in Acinetobacter baumannii. Medicine 96:e7188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu JY, Miller PF, Gosink M, Olson ER (1999) The identification of a new family of sugar efflux pumps in Escherichia coli. Mol Microbiol 31:1845–1851

    Article  CAS  PubMed  Google Scholar 

  • Lomovskaya O, Bostian KA (2006a) Practical applications and feasibility of efflux pump inhibitors in the clinic—a vision for applied use. Biochem Pharmacol 71:910

    Article  CAS  PubMed  Google Scholar 

  • Lomovskaya O, Bostian KA (2006b) Practical applications and feasibility of efflux pump inhibitors in the clinic—a vision for applied use. Biochem Pharmacol 71:910–918

    Article  CAS  PubMed  Google Scholar 

  • Lomovskaya O, Warren MS, Lee A, Galazzo J, Fronko R, Lee M, Blais J, Cho D, Chamberland S, Renau T (2001) Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrob Agents Chemother 45:105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louw GE, Warren RM, Gey van Pittius NC, Leon R, Jimenez A, Hernandez-Pando R, McEvoy CR, Grobbelaar M, Murray M, van Helden PD (2011) Rifampicin reduces susceptibility to ofloxacin in rifampicin-resistant Mycobacterium tuberculosis through efflux. Am J Respir Crit Care Med 184:269–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiden MC, Davis EO, Baldwin SA, Moore DC, Henderson PJ (1987) Mammalian and bacterial sugar transport proteins are homologous. Nature 325:641–643

    Article  CAS  PubMed  Google Scholar 

  • Malinga L, Brand J, Olorunju S, Stoltz A, van der Walt M (2016) Molecular analysis of genetic mutations among cross-resistant second-line injectable drugs reveals a new resistant mutation in Mycobacterium tuberculosis. Diagn Microbiol Infect Dis 85:433–437

    Article  CAS  PubMed  Google Scholar 

  • Maloney PC (1994) Bacterial transporters. Curr Opin Cell Biol 6:571–582

    Article  CAS  PubMed  Google Scholar 

  • Margaret O, Levy SB (2004) Methods of reducing microbial resistance to drugs. US patent 6,677,133, 13 Jan 2004

  • Marger MD, Saier MH (1993) A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem Sci 18:13

    Article  CAS  PubMed  Google Scholar 

  • Matsumura K, Furukawa S, Ogihara H, Morinaga Y (2011) Roles of multidrug efflux pumps on the biofilm formation of Escherichia coli K-12. Biocontrol Sci 16:69

    Article  CAS  PubMed  Google Scholar 

  • Milano A, Pasca MR, Provvedi R, Lucarelli AP, Manina G, Ribeiro ALDJL, Manganelli R, Riccardi G (2009) Azole resistance in Mycobacterium tuberculosis is mediated by the MmpS5–MmpL5 efflux system. Tuberculosis 89:84–90

    Article  CAS  PubMed  Google Scholar 

  • Minch KJ, Rustad TR, Peterson EJ, Winkler J, Reiss DJ, Ma S, Hickey M, Brabant W, Morrison B, Turkarslan S (2011) The DNA-binding network of Mycobacterium tuberculosis. Nat Commun 6:5829

    Article  CAS  Google Scholar 

  • Newstead S, Drew D, Cameron AD, Postis VL, Xia X, Fowler PW, Ingram JC, Carpenter EP, Sansom MS, McPherson MJ (2011) Crystal structure of a prokaryotic homologue of the mammalian oligopeptide–proton symporters, PepT1 and PepT2. EMBO J 30:417–426

    Article  CAS  PubMed  Google Scholar 

  • Nguyen L (2016) Antibiotic resistance mechanisms in M. tuberculosis: an update. Arch Toxicol 90:1585–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolae S, Jane K, Fowler PW, Cameron AD, David D, So I, Simon N (2012) Alternating access mechanism in the POT family of oligopeptide transporters. EMBO J 31:3411–3421

    Article  CAS  Google Scholar 

  • Okandeji BO, Greenwald DM, Wroten J, Sello JK (2011a) Synthesis and evaluation of inhibitors of bacterial drug efflux pumps of the major facilitator superfamily. Bioorg Med Chem 19:7679–7689

    Article  CAS  PubMed  Google Scholar 

  • Okandeji BO, Greenwald DM, Wroten J, Sello JK (2011b) Synthesis and evaluation of inhibitors of bacterial drug efflux pumps of the major facilitator superfamily. Bioorg Med Chem 19:7679–7689

    Article  CAS  PubMed  Google Scholar 

  • O’May GA, Jacobsen SM, Longwell M, Stoodley P, Mobley HL, Shirtliff ME (2009) The high-affinity phosphate transporter Pst in Proteus mirabilis HI4320 and its importance in biofilm formation. Microbiology 155:1523–1535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Otto C, Tom DS, Bauer K (1996) Dipeptide uptake by adenohypophysial folliculostellate cells. Am J Physiol 271:210–217

    Google Scholar 

  • Pagès JM, Amaral L (2009) Mechanisms of drug efflux and strategies to combat them: challenging the efflux pump of Gram-negative bacteria. Biochim Biophys Acta 1794:826–833

    Article  PubMed  CAS  Google Scholar 

  • Pang Y, Lu J, Wang Y, Song Y, Wang S, Zhao Y (2013) Study of the rifampin monoresistance mechanism in Mycobacterium tuberculosis. Antimicrob Agents Chemother 57:893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pao SS, Paulsen IT, Saier MH (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62:1–34

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pasca MR, Guglierame P, Arcesi F, Bellinzoni M, De Rossi E, Riccardi G (2004) Rv2686c-Rv2687c-Rv2688c, an ABC fluoroquinolone efflux pump in Mycobacterium tuberculosis. Antimicrob Agents Chemother 48:3175–3178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulsen IT, Skurray RA (1993) Topology, structure and evolution of two families of proteins involved in antibiotic and antiseptic resistance in eukaryotes and prokaryotes—an analysis. Gene 124:1–11

    Article  CAS  PubMed  Google Scholar 

  • Paulsen IT, Brown MH, Skurray RA (1996) Proton-dependent multidrug efflux systems. Microbiol Rev 60:575–608

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paulsen IT, Sliwinski MK, Saier MH Jr (1998) Microbial genome analyses: global comparisons of transport capabilities based on phylogenies, bioenergetics and substrate specificities. J Mol Biol 277:573

    Article  CAS  PubMed  Google Scholar 

  • Pearson JP, Delden CV, Iglewski BH (1999) Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol 181:1203

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen BP, Kumar H, Waight AB, Risenmay AJ, Roe-Zurz Z, Chau BH, Schlessinger A, Bonomi M, Harries W, Sali A (2013) Crystal structure of a eukaryotic phosphate transporter. Nature 496:533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poole K (2002) Mechanisms of bacterial biocide and antibiotic resistance. J Appl Microbiol 92:1S–3S

    Article  Google Scholar 

  • Post DM, Held JM, Ketterer MR, Phillips NJ, Sahu A, Apicella MA, Gibson BW (2014) Comparative analyses of proteins from Haemophilus influenzae biofilm and planktonic populations using metabolic labeling and mass spectrometry. BMC Microbiol 14:329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Potera, C (1999). Forging a link between biofilms and disease, (ed)^(eds), American Association for the Advancement of Science

  • Radestock S, Forrest LR (2011) The alternating-access mechanism of MFS transporters arises from inverted-topology repeats. J Mol Biol 407:698–715

    Article  CAS  PubMed  Google Scholar 

  • Ramage G, Bachmann S, Patterson TF, Wickes BL, Lópezribot JL (2002) Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J Antimicrob Chemother 49:973–980

    Article  CAS  PubMed  Google Scholar 

  • Ramón-García S, Martín C, Thompson CJ, Aínsa JA (2009) Role of the Mycobacterium tuberculosis P55 efflux pump in intrinsic drug resistance, oxidative stress responses, and growth. Antimicrob Agents Chemother 53:3675–3682

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramón-García S, Mick V, Dainese E, Martín C, Thompson CJ, De Rossi E, Manganelli R, Aínsa JA (2012) Functional and genetic characterization of the tap efflux pump in Mycobacterium bovis BCG. Antimicrob Agents Chemother 56:2074–2083

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Renau TE, Leger RL, Flamme EM, Wang M, Yen R, Madsen D, Griffith D, Chamberland S, Dudley MN, Lee VJ (2003) Conformationally-restricted analogues of efflux pump inhibitors that potentiate the activity of levofloxacin in Pseudomonas aeruginosa. Bioorg Med Chem Lett 13:2755–2758

    Article  CAS  PubMed  Google Scholar 

  • Rossi ED, Arrigo P, Bellinzoni M, Silva PAE, Martín C, Aínsa JA, Guglierame P, Riccardi G (2002) The multidrug transporters belonging to major facilitator superfamily in Mycobacterium tuberculosis. Mol Med 8:714–724

    PubMed  PubMed Central  Google Scholar 

  • Sahu PK, Iyer PS, Gaikwad MB, Talreja SC, Pardesi KR, Chopade BA (2012) An MFS transporter-like ORF from MDR Acinetobacter baumannii AIIMS 7 is associated with adherence and biofilm formation on biotic/abiotic surface. Int J Microbiol 2012:490647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sala-Rabanal M, Loo DD, Hirayama BA, Wright EM (2008) Molecular mechanism of dipeptide and drug transport by the human renal H+/oligopeptide cotransporter hPEPT2. Am J Physiol 294:F1422–F1432

    CAS  Google Scholar 

  • Santos SCD, Teixeira MC, Dias PJ, Sácorreia I (2014) MFS transporters required for multidrug/multixenobiotic (MD/MX) resistance in the model yeast: understanding their physiological function through post-genomic approaches. Front Physiol 5:180

    PubMed  PubMed Central  Google Scholar 

  • Santos R, Costa C, Mil-Homens D, Romão D, De-Carvalho CCCR, Pais P, Mira NP, Fialho AM, Teixeira MC (2016) The multidrug resistance transporters CgTpo1_1 and CgTpo1_2 play a role in virulence and biofilm formation in the human pathogen Candida glabrata. Cell Microbiol 19:5

    Article  CAS  Google Scholar 

  • Seol W, Shatkin AJ (1991) Escherichia coli kgtP encodes an alpha-ketoglutarate transporter. Proc Natl Acad Sci USA 88:3802–3806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Severi E, Hosie AH, Hawkhead JA, Thomas GH (2010) Characterization of a novel sialic acid transporter of the sodium solute symporter (SSS) family and in vivo comparison with known bacterial sialic acid transporters. FEMS Microbiol Lett 304:47–54

    Article  CAS  PubMed  Google Scholar 

  • Shah AH, Singh A, Dhamgaye S, Chauhan N, Vandeputte P, Suneetha KJ, Kaur R, Mukherjee PK, Chandra J, Ghannoum MA (2014) Novel role of a family of major facilitator transporters in biofilm development and virulence of Candida albicans. Biochem J 460:223–235

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Kumar M, Sharma S, Nargotra A, Koul S, Khan IA (2010) Piperine as an inhibitor of Rv1258c, a putative multidrug efflux pump of Mycobacterium tuberculosis. J Antimicrob Chemother 65:1694

    Article  CAS  PubMed  Google Scholar 

  • Shemesh M, Tam A, Steinberg D (2007) Differential gene expression profiling of Streptococcus mutans cultured under biofilm and planktonic conditions. Microbiology 153:1307

    Article  CAS  PubMed  Google Scholar 

  • Silva PE, Bigi F, de la Paz Santangelo MA, Romano MI, Martín C, Cataldi A, Aínsa JA (2001) Characterization of P55, a multidrug efflux pump in Mycobacterium bovis and Mycobacterium tuberculosis. Antimicrob Agents Chemother 45:800–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith KLJ, Lee S (2016) Inhibition of apoptosis by Rv2456c through Nuclear factor-κB extends the survival of Mycobacterium tuberculosis. Int J Mycobacteriol 5:426–436

    Article  Google Scholar 

  • Solcan N, Kwok J, Fowler PW, Cameron AD, Drew D, Iwata S, Newstead S (2012) Alternating access mechanism in the POT family of oligopeptide transporters. EMBO J 31:3411–3421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song L, Wu X (2016) Development of efflux pump inhibitors in antituberculosis therapy. Int J Antimicrob Agents 47:421–429

    Article  CAS  PubMed  Google Scholar 

  • Soto SM (2013) Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence 4:223–229

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Vanderpool CK (2011) Regulation and function of Escherichia coli sugar efflux transporter A (SetA) during glucose-phosphate stress. J Bacteriol 193:143–153

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Zeng X, Yan C, Sun X, Gong X, Rao Y, Yan N (2012) Crystal structure of a bacterial homologue of glucose transporters GLUT1-4. Nature 490:361–366

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Bankston JR, Payandeh J, Hinds TR, Zagotta WN, Zheng N (2014) Crystal structure of the plant dual-affinity nitrate transporter NRT1.1. Nature 507:73–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Supek F, Miñana B, Valcárcel J, Gabaldón T, Lehner B (2014) Synonymous mutations frequently act as driver mutations in human cancers. Cell 156:1324–1335

    Article  CAS  PubMed  Google Scholar 

  • Takiff HE, Cimino M, Musso MC, Weisbrod T, Martinez R, Delgado MB, Salazar L, Bloom BR Jr, Jacobs WR (1996) Efflux pump of the proton antiporter family confers low-level fluoroquinolone resistance in Mycobacterium smegmatis. Proc Natl Acad Sci USA 93:362–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thanassi DG, Cheng LW, Nikaido H (1997) Active efflux of bile salts by Escherichia coli. J Bacteriol 179:2512–2518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomase R, Roger L, Rose Y, She M, Ericm F, Joan S, Carlal G, Suzanne C, Olga L, Vingj L (2002) Peptidomimetics of efflux pump inhibitors potentiate the activity of levofloxacin in Pseudomonas aeruginosa. Cheminform 12:763–766

    Google Scholar 

  • Torbensen R, Møller HD, Gresham D, Alizadeh S, Ochmann D, Boles E, Regenberg B (2012) Amino acid transporter genes are essential for FLO11-dependent and FLO11-independent biofilm formation and invasive growth in Saccharomyces cerevisiae. PLoS ONE 7:e41272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Dyk TK, Templeton LJ, Cantera KA, Sharpe PL, Sariaslani FS (2004) Characterization of the Escherichia coli AaeAB efflux pump: a metabolic relief valve? J Bacteriol 186:7196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van BF, Pagès JM, Lee VJ (2006) Inhibitors of bacterial efflux pumps as adjuvants in antibiotic treatments and diagnostic tools for detection of resistance by efflux. Recent Pat Anti Infect Drug Discov 1:157

    Google Scholar 

  • Vanderlinde EM, Harrison JJ, Muszyński A, Carlson RW, Turner RJ, Yost CK (2010) Identification of a novel ABC transporter required for desiccation tolerance, and biofilm formation in Rhizobium leguminosarum bv. viciae 3841. FEMS Microbiol Ecol 71:327–340

    Article  CAS  PubMed  Google Scholar 

  • Varela MF, Sansom CE, Griffith JK (1995) Mutational analysis and molecular modelling of an amino acid sequence motif conserved in antiporters but not symporters in a transporter superfamily. Mol Membr Biol 12:313–319

    Article  CAS  PubMed  Google Scholar 

  • Viale MN, Park KT, Imperiale B, Gioffre AK, Colombatti Olivieri MA, Moyano RD, Morcillo N, Santangelo ML, Davis W, Romano MI (2014) Characterization of a Mycobacterium avium subsp. avium operon associated with virulence and drug detoxification. Biomed Res Int 2014:809585

    PubMed  PubMed Central  Google Scholar 

  • Wang W, van Veen HW (2012) Basic residues R260 and K357 affect the conformational dynamics of the major facilitator superfamily multidrug transporter LmrP. PLoS ONE 7:e38715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang R, Zhang Z, Xie L, Xie J (2014) Implications of mycobacterium major facilitator superfamily for novel measures against tuberculosis. Crit Rev Eukaryot Gene Expr 25:315

    Article  Google Scholar 

  • Warren M, Lee J, Lee A, Hoshino K, Ishida H, Lomovskaya O (2000) An inhibitor of the Mex pumps from Pseudomonas aeruginosa is also a substrate of these pumps. In: 40th interscience conference on antimicrobial agents and chemotherapy, F-1495

  • Wood NJ, Alizadeh T, Richardson DJ, Ferguson SJ, Moir JW (2002) Two domains of a dual-function NarK protein are required for nitrate uptake, the first step of denitrification in Paracoccus pantotrophus. Mol Microbiol 44:157–170

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2016) Global tuberculosis report 2016. WHO, Geneva

    Google Scholar 

  • Wright CC, Hsu FF, Arnett E, Dunaj JL, Davidson PM, Pacheco SA, Harriff MJ, Lewinsohn DM, Schlesinger LS, Purdy GE (2017) The Mycobacterium tuberculosis MmpL11 cell wall lipid transporter is important for biofilm formation, intracellular growth and non-replicating persistence. Infect Immun. doi:10.1128/IAI.00131-17

    PubMed Central  Google Scholar 

  • Yamaguchi A, Ono N, Akasaka T, Noumi T, Sawai T (1990) Metal-tetracycline/H+ antiporter of Escherichia coli encoded by a transposon, Tn10. The role of the conserved dipeptide, Ser65-Asp66, in tetracycline transport. J Biol Chem 265:15525–15530

    CAS  PubMed  Google Scholar 

  • Yan N (2013) Structural advances for the major facilitator superfamily (MFS) transporters. Trends Biochem Sci 38:151

    Article  CAS  PubMed  Google Scholar 

  • Yan N (2015) Structural biology of the major facilitator superfamily transporters. Annu Rev Biophys 44:257

    Article  CAS  PubMed  Google Scholar 

  • Yan H, Huang W, Yan C, Gong X, Jiang S, Zhao Y, Wang J, Shi Y (2013) Structure and mechanism of a nitrate transporter. Cell Rep 3:716–723

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, He X, Szewczyk P, Nguyen T, Chang G (2006) Structure of the multidrug transporter EmrD from Escherichia coli. Science 312:741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhang J, Cui P, Zhang Y, Zhang W (2017) Identification of novel efflux proteins Rv0191, Rv3756c, Rv3008 and Rv1667c involved in pyrazinamide resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 61(8):e00940-1–e00940-17

    Google Scholar 

  • Zhe Q, Takeaki O, Moritoshi S, Yoshio U (2000) Screening method for substrates of multidrug resistance-associated protein. Anal Chim Acta 423:197–203

    Article  Google Scholar 

  • Zheng H, Wisedchaisri G, Gonen T (2013) Crystal structure of a nitrate/nitrite exchanger. Nature 497:647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Long F, Chen Y, Knochel S, She Q, Shi X (2008) A putative ABC transporter is involved in negative regulation of biofilm formation by listeria monocytogenes. Appl Environ Microbiol 74:7675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National key R & D plan (2016YFC0502304), National Natural Science Foundation (Grant Numbers 81371851, 81071316, 81271882, 81301394, 81172806, 81471563], the Fundamental Research Funds for the Central Universities (Grant Numbers XDJK2017D101, XDJK2017D100, XDJK2017D099. Chongqing Municipal Education Science foundation (2015-JC-020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Xie.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Gu, Y., Li, J. et al. Mycobacterium tuberculosis Major Facilitator Superfamily Transporters. J Membrane Biol 250, 573–585 (2017). https://doi.org/10.1007/s00232-017-9982-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-017-9982-x

Keywords

Navigation