Skip to main content

Advertisement

Log in

Calcein Release from Cells In Vitro via Reversible and Irreversible Electroporation

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the dependence of calcein extraction and cell viability on the parameters of pulsed electric field (PEF). Two different approaches concerning PEF parameters were investigated: (1) extraction efficiency and cell viability dependence on pulse number, exploiting 1200 V/cm 100 µs duration high voltage (HV) electric pulses and (2) extraction efficiency and cell viability dependence on the pulses with different duration (44–400 µs) and electric field strength (600–1800 V/cm) that result in the same amount of electric field energy delivered to Chinese hamster ovary cells. Extraction efficiency was evaluated as a percentage ratio of calcein fluorescence intensity prior and after PEF treatment. Cell viability was evaluated using PI test and cell clonogenic assay. Moreover, calcein release dynamics from cells after 600 V/cm 400 µs, 1200 V/cm 100 µs, and 1800 V/cm 44 µs was evaluated. Our results show that HV pulses induce instant calcein extraction due to reversible electroporation; however, subsequent calcein leakage over time was only observed when 9 HV pulses of 1800 V/cm 44 µs were used. The increased number of pulses resulted in more efficient total calcein extraction. With the same total energy delivered via electric pulses, the increase of calcein extraction efficiency was more dependent on pulse strength rather than pulse duration. The highest calcein extraction efficiency (84.5 ± 7.4%) was obtained using 9 electric field pulses of 1800 V/cm, 44 µs at 1 Hz. Furthermore, the extraction efficiency can be significantly enhanced if external mechanical stress (pipetting) is applied to cells. Cell viability was determined to be dependent on different PEF exposure parameters. It varied from 96.8 ± 4.8 to 31.2 ± 8.9%, implying the possibility to adjust PEF parameter combinations to maintain high cell viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ade-Omowaye BIO, Angersbach A, Eshtiaghi NM, Knorr D (2000) Impact of high intensity electric field pulses on cell permeabilisation and as pre-processing step in coconut processing. Innov Food Sci Emerg 1(3):203–209

    Article  CAS  Google Scholar 

  • Aguilar-Rosasa SF, Ballinas-Casarrubiasa MS, Nevarez-Moorillona GV, Martin-Bellosob O, Ortega-Rivasa E (2007) Thermal and pulsed electric fields pasteurization of apple juice: effects on physicochemical properties and flavour compounds. J Food Eng 83:41–46

    Article  Google Scholar 

  • Amiali M, Ngadi MO, Raghavan VGS, Smith JP (2004) Inactivation of Escherichia coli O157:H7 in liquid dialyzed egg using pulsed electric fields. Food Bioprod Process 82(2):151–156

    Article  Google Scholar 

  • Barbosa-Canovas GV, Gongora-Nieto MM, Pothakamury UR, Swanson GG (1999) Preservation of foods with pulsed electric fields. Academic Press, San Diego

    Google Scholar 

  • Barbosa-Canovas GV, Pierson MD, Zhang QH, Schaffner DW (2000) Pulsed electric fields. Special supplement: kinetics of microbial inactivation for alternative food processing technologies. J Food Sci 65:65–79

    Article  Google Scholar 

  • Barrau C, Teissie J, Gabriel B (2004) Osmotically induced membrane tension facilitates the triggering of living cell electropermeabilization. Bioelectrochemistry 63(1–2):327–332

    Article  CAS  PubMed  Google Scholar 

  • Bazhal M, Vorobiev E (2000) Electrical treatment of apple cossettes for intensifying juice pressing. J Sci Food Agr 80(11):1668–1674

    Article  CAS  Google Scholar 

  • Belehradek M, Domenge C, Luboinski B, Orlowski S, Belehradek J Jr, Mir LM (1993) Electrochemotherapy, a new antitumor treatment. First clinical phase I–II trial. Cancer 72(12):3694–3700

    Article  CAS  PubMed  Google Scholar 

  • Benov LC, Antonov PA, Ribarov SR (1994) Oxidative damage of the membrane lipids after electroporation. Gen Physiol Biophys 13(2):85–97

    CAS  PubMed  Google Scholar 

  • Cabula C, Campana LG, Grilz G, Galuppo S, Bussone R, De Meo L, Bonadies A, Curatolo P, De Laurentiis M, Renne M, Valpione S, Fabrizio T, Solari N, Guida M, Santoriello A, D’Aiuto M, Agresti R (2015) Electrochemotherapy in the treatment of cutaneous metastases from breast cancer: a multicenter cohort analysis. Ann Surg Oncol 22:442–450

    Article  PubMed Central  Google Scholar 

  • Cai Z, Kastell A, Knorr D, Smetanska I (2012) Exudation: an expanding technique for continuous production and release of secondary metabolites from plant cell suspension and hairy root cultures. Plant Cell Rep 31:461–477

    Article  CAS  PubMed  Google Scholar 

  • Canatella PJ, Black MM, Bonnichsen DM, McKenna C, Prausnitz MR (2004) Tissue electroporation: quantification and analysis of heterogeneous transport in multicellular environments. Biophys J 86(5):3260–3268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canatella PJ, Karr JF, Petros JA, Prausnitz MR (2001) Quantitative study of electroporation mediated uptake and cell viability. Biophys J 80(2):755–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Smye SW, Robinson MP, Evans JA (2006) Membrane electroporation theories: a review. Med Biol Eng Comput 44(1–2):5–14

    Article  CAS  PubMed  Google Scholar 

  • Ching CT, Fu LS, Sun TP, Hsu TH, Chang KM (2012) Use of electroporation and reverse iontophoresis for extraction of transdermal multibiomarkers. Int J Nanomed 7:885–894

    Article  CAS  Google Scholar 

  • Corrales M, Toepfl S, Butz P, Knorr D, Tauscher B (2008) Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: a comparison. Innov Food Sci Emerg Technol 9(1):85–91

    Article  CAS  Google Scholar 

  • Eing C, Goettel M, Straessner R, Gusbeth C, Frey W (2013) Pulsed Electric Field Treatment of Microalgae—Benefits for Microalgae Biomass Processing. Plasma Sci. IEEE Transact 41(10):2901–2907

    CAS  Google Scholar 

  • El-Ashram S, Nasr IA, Suo X (2016) Nucleic acid protocols: extraction and optimization. Biotechnol Rep 5(12):33–39

    Article  Google Scholar 

  • El Zakhem H, Lanoiselle JL, Lebovka N, Nonus M, Vorobiev E (2007) Influence of temperature and surfactant on Escherichia coli inactivation in aqueous suspensions treated by moderate pulsed electric fields. Int J Food Microbiol 120(3):259–265

  • Eshtiaghi MN, Knorr D (2002) High electric field pulse pretreatment: potential for sugar beet processing. J Food Eng 52:265–272

    Article  Google Scholar 

  • Flaumenbaum BL (1949) Electrical treatment of fruits and vegetables before juice extraction. Trudy OTIKP 3:15–20

    Google Scholar 

  • Frandsen SK, Gissel H, Hojman P, Eriksen J, Gehl J (2014) Calcium electroporation in three cell lines: a comparison of bleomycin and calcium, calcium compounds, and pulsing conditions. Biochim Biophys Acta 1840(3):1204–1208

    Article  CAS  PubMed  Google Scholar 

  • Frandsen SK, Gissel H, Hojman P, Tramm T, Eriksen J, Gehl J (2012) Direct therapeutic applications of calcium electroporation to effectively induce tumor. Necrosis Cancer Res 72(6):1336–1341

    Article  CAS  PubMed  Google Scholar 

  • Gabriel B, Teissie J (1995) Control by electrical parameters of of short- and long-term cell death resulting from electropermeabilization of Chinese hamster ovary cells. Biochim et Biophys Acta 1266:171–178

    Article  CAS  Google Scholar 

  • Ganeva V, Galutzov B, Teissie J (2003) High yield electroextraction of proteins from yeast by flow process. Anal Biochem 315(1):77–84

    Article  CAS  PubMed  Google Scholar 

  • Geng T, Bao N, Sriranganathanw N, Li L, Lu C (2012) Genomic DNA extraction from cells by electroporation on an integrated microfluidic platform. Anal Chem 84(21):9632–9639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimi N, Lebovka NI, Vorobiev E, Vaxelaire J (2009) Effect of a pulsed electric field treatment on expression behavior and juice quality of chardonnay grape. Food Biophys 4:191–198

    Article  Google Scholar 

  • Grimi N, Mamouni F, Lebovka N, Vorobiev E, Vaxelaire J (2011) Impact of apple processing modes on extracted juice quality: pressing assisted by pulsed electric fields. J Food Eng 103(1):52–61

    Article  CAS  Google Scholar 

  • Guderjan M, Elez-Martínez P, Knorr D (2007) Application of pulsed electric fields at oil yield and content of functional food ingredients at the production of rapeseed oil. Innov Food Sci Emerg 8(1):55–62

    Article  CAS  Google Scholar 

  • Guderjan M, Töpfl S, Angersbach A, Knorr D (2005) Impact of pulsed electric field treatment on the recovery and quality of plant oils. J Food Eng 67(3):281–287

    Article  Google Scholar 

  • Hansen EL, Sozer EB, Romeo S, Frandsen SK, Vernier PT, Gehl J (2015) Dose-dependent ATP depletion and cancer cell death following calcium electroporation, relative effect of calcium concentration and electric field strength. PLoS ONE 10(4):e0122973

    Article  PubMed  PubMed Central  Google Scholar 

  • Honda H, Zhao QL, Kondo T (2002) Effects of dissolved gases and an echo contrast agent on apoptosis induced by ultrasound and its mechanism via the mitochondria-caspase pathway. Ultrasound Med Biol 28(5):673–682

    Article  PubMed  Google Scholar 

  • Honda H, Kondo T, Zhao QL, Feril LB Jr, Kitagawa H (2004) Role of intracellular calcium ions and reactive oxygen species in apoptosis induced by ultrasound. Ultrasound Med Biol 30(5):683–692

    Article  PubMed  Google Scholar 

  • Knorr D, Angersbach A (1998) Impact of high-intensity electric field pulses on plant membrane permeabilization. Trends Food Sci Tech (9):185–191

  • Jakštys B, Ruzgys P, Tamošiūnas M, Šatkauskas S (2015) Different cell viability assays reveal inconsistent results after bleomycin electrotransfer in vitro. J Membrane Biol 248(5):857–863

    Article  Google Scholar 

  • Kandušer M, Miklavčič D (2008) Electroporation in biological cell and tissue: an overview. In: Vorobiev E, Lebovka N (eds) Electrotechnologies for extraction from food plants and biomaterials. Springer Science, New York, pp 1–37

    Google Scholar 

  • Kandušer M, Šentjurc M, Miklavčič D (2006) Cell membrane fluidity related to electroporation and resealing. Eur Biophys J 35(3):196–204

    Article  PubMed  Google Scholar 

  • Kandušer M, Šentjurc M, Miklavčič D (2008) The temperature effect during pulse application on cell membrane fluidity and permeabilization. Bioelectrochemistry 74(1):52–57

    Article  PubMed  Google Scholar 

  • Kanthou C, Tozer GM (2009) Microtubule depolymerizing vascular disrupting agents: novel therapeutic agents for oncology and other pathologies. Int J Exp Path 90(3):284–294

    Article  CAS  Google Scholar 

  • Kinosita K Jr, Tsong TY (1979) Voltage-induced conductance in human erythrocyte membranes. BBA Biomembranes 554(2):479–497

    Article  CAS  PubMed  Google Scholar 

  • Knorr D, Ade-Omowaye BIO, Heinz V (2002) Nutritional improvement of plant foods by non-thermal processing. Proc Nutr Soc 61(2):311–318

    Article  CAS  PubMed  Google Scholar 

  • Lebovka NI, Praporscica I, Vorobieva E (2004) Combined treatment of apples by pulsed electric fields and by heating at moderate temperature. J Food Eng 65(2):211–217

    Article  Google Scholar 

  • Maciulevičius M, Tamošiūnas M, Jakštys B, Jurkonis R, Venslauskas MS, Šatkauskas S (2016) Investigation of microbubble cavitation-induced Calcein release from cells in vitro. Ultrasound Med Biol 42(12):2990–3000

    Article  PubMed  Google Scholar 

  • Murthy SN, Zhao YL, Hui SW, Sen A (2005) Electroporation and transcutanious extraction (ETE) for pharmacokinetic studies of drugs. J Control Release 105(1–2):132–141

    Article  CAS  PubMed  Google Scholar 

  • Nair SK, Boczkowski D, Morse M, Cumming RI, Lyerly HK, Gilboa E (1998) Induction of primary carcinoembryonic antigen (CEA)—specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. Nat Biotechnol 16:364–369

    Article  CAS  PubMed  Google Scholar 

  • Neumann E, Toensing K, Kakorin S, Budde P, Frey J (1998) Mechanism of electroporative dye uptake by mouse B cells. Biophys J 74(1):98–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odriozola-Serrano I, Soliva-Fortuny R, Hernandez-Jover T, Martin-Belloso O (2009) Carotenoid and phenolic profile of tomato juices processed by high intensity pulsed electric fields compared with conventional thermal treatments. Food Chem 112(1):258–266

    Article  CAS  Google Scholar 

  • Ohshima T, Hama Y, Sato M (2000) Releasing profiles of gene products from recombinant Escherichia coli in a high-voltage pulsed electric field. Biochem Eng J 5(2):149–155

    Article  CAS  PubMed  Google Scholar 

  • Pavlin M, Kandušer M, Reberšek M, Pucihar G, Hart FX, Magjarevićcacute R, Miklavčič D (2005) Effect of cell electroporation on the conductivity of a cell suspension. Biophys J 88(6):4378–4390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Praporscic I, Ghnimi S, Vorobiev E (2005) Enhancement of pressing of sugar beet cuts by combined ohmic heating and pulsed electric field treatment. J Food Process Pres 29(5–6):378–389

    Article  Google Scholar 

  • Prausnitz MR, Corbett JD, Gimm JA, Golan DE, Langer R, Weaver JC (1995) Millisecond measurement of transport during and after an electroporation pulse. Biophys J 68(5):1864–1870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prausnitz MR, Lau BS, Milano CD, Conner S, Langer R, Weaver J (1993) A quantitative study of electroporation showing a plateau in net molecular transport. Biophys J 65(1):414–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prausnitz MR, Milano CD, Gimm JA, Langer R, Weaver JC (1994) Quantitative study of molecular transport due to electroporation: uptake of bovine serum albumin by erythrocyte ghosts. Biophys J 66:1522–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pucihar G, Kotnik T, Miklavčič D, Teissié J (2008) Kinetics of transmembrane transport of small molecules into electropermeabilized cells. Biophys J 95(6):2837–2848

  • Rols MP, Teissie J (1990a) Electropermeabilization of mammalian cells quantitative analysis of the phenomenon. Biophys J 58(5):1089–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rols MP, Teissie J (1990b) Modulation of electrically induced permeabilization and fusion of Chinese hamster ovary cells by osmotic pressure. Biochemistry 29(19):4561–4567

    Article  CAS  PubMed  Google Scholar 

  • Rols MP (2006) Electropermeabilization, a physical method for the delivery of therapeutic molecules into cells. Biochim Biophys Acta 1758(3):423–428

    Article  CAS  PubMed  Google Scholar 

  • Sale A, Hamilton W (1967) Effect of high electric fields on microorganisms: I. Killing of bacteria and yeast. Biochim Biophys Acta 148(3):781–788

    Article  Google Scholar 

  • Satkauskas S, Ruzgys P, Venslauskas MS (2012) Towards the mechanisms for efficient gene transfer into cells and tissues by means of cell electroporation. Expert Opin Biol Ther 12(3):275–286

    Article  CAS  PubMed  Google Scholar 

  • Saulis G, Satkauskas S, Praneviciūte R (2007) Determination of cell electroporation from the release of intracellular potassium ions. Anal Biochem 360(2):273–281

    Article  CAS  PubMed  Google Scholar 

  • Saulis G, Saulė R (2012) Size of the pores created by an electric pulse: Microsecond vs millisecond pulses. Biochim Biophys Acta 1818(12):3032–3039

    Article  CAS  PubMed  Google Scholar 

  • Sersa G, Stabuc B, Cemazar M, Miklavcic D, Rudolf Z (2000) Electrochemotherapy with cisplatin: clinical experience in malignant melanoma patients. Clin Cancer Res 6(3):863–867

    CAS  PubMed  Google Scholar 

  • Toepfl S, Mathys A, Heinz V, Knorr D (2007) Review: potential of high hydrostatic pressure and pulsed electric fields for energy efficient and environmentally friendly food processing. Food Rev Int 22(4):405–423

    Article  Google Scholar 

  • Torregrosa F, Cortes C, Esteve MJ, Frígola A (2005) Effect of high-intensity pulsed electric fields processing and conventional heat treatment on orange—carrot juice carotenoids. J Agric Food Chem 53(24):9519–9525

    Article  CAS  PubMed  Google Scholar 

  • Van Meirvenne S, Straetman L, Heirman C, Dullaers M, De Greef C, Van Tendeloo V, Thielemans K (2002) Efficient genetic modification of murine dendritic cells by electroporation with mRNA. Cancer Gene Ther 9(9):787–797

    Article  PubMed  Google Scholar 

  • Venslauskas MS, Šatkauskas S (2015) Mechanisms of transfer of bioactive molecules through the cell membrane by electroporation. Eur Biophys J 44(5):277–289

    Article  PubMed  Google Scholar 

  • Weaver JC, Chizmadzhev YA (1996) Theory of electroporation: a review. Bioelectrochem Bioenerg 41(2):135–160

    Article  CAS  Google Scholar 

  • Weaver JC (2003) Electroporation of biological membranes from multicellular to nano scales. IEEE Trans Dielectr Electr Insul 10(5):754–768

    Article  CAS  Google Scholar 

  • Weaver JC (2000) Electroporation of cells and tissues. IEEE Trans Plasma Sci 28(1):24–33

    Article  CAS  Google Scholar 

  • Wilgenhof S, Corthals J, Van Nuffel AMT, Benteyn D, Heirman C, Bonehill A, Thielemans K, Neyns B (2015) Long-term clinical outcome of melanoma patients treated with messenger RNA-electroporated dendritic cell therapy following complete resection of metastases. Cancer Immunol Immunother 64(3):381–388

    Article  CAS  PubMed  Google Scholar 

  • Winstel V, Kühnera P, Krismera B, Peschela A, Rohdec H (2015) Transfer of plasmid DNA to clinical coagulase-negative staphylococcal pathogens by using a unique bacteriophage. Appl Environ Microb 81(7):2481–2488

    Article  CAS  Google Scholar 

  • Zhan Y, Martinb VA, Geahlenb RL, Lu C (2010) One-step extraction of subcellular proteins from eukaryotic cells. Lab Chip 10(16):2046–2048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan Y, Sun C, Cao Z, Bao N, Xing J, Lu C (2012) Release of intracellular proteins by electroporation with preserved cell viability. Anal Chem 84(19):8102–8105

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Shi J, Cui J, Deng CX (2008) Effects of extracellular calcium on cell membrane resealing in sonoporation. J Control Release 126(1):34–43

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Yang K, Cui J, Ye JY, Deng CX (2012) Controlled permeation of cell membrane by single bubble acoustic cavitation. J Control Release 157(1):103–111

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grant (SVE-08, 2014) from the Research Council of Lithuania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saulius Šatkauskas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 34 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajeckaitė, V., Jakštys, B., Rafanavičius, A. et al. Calcein Release from Cells In Vitro via Reversible and Irreversible Electroporation. J Membrane Biol 251, 119–130 (2018). https://doi.org/10.1007/s00232-017-0005-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-017-0005-8

Keywords

Navigation