Skip to main content
Log in

Electropore Formation in Mechanically Constrained Phospholipid Bilayers

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations of lipid bilayers in aqueous systems reveal how an applied electric field stabilizes the reorganization of the water–membrane interface into water-filled, membrane-spanning, conductive pores with a symmetric, toroidal geometry. The pore formation process and the resulting symmetric structures are consistent with other mathematical approaches such as continuum models formulated to describe the electroporation process. Some experimental data suggest, however, that the shape of lipid electropores in living cell membranes may be asymmetric. We describe here the axially asymmetric pores that form when mechanical constraints are applied to selected phospholipid atoms. Electropore formation proceeds even with severe constraints in place, but pore shape and pore formation time are affected. Since lateral and transverse movement of phospholipids may be restricted in cell membranes by covalent attachments to or non-covalent associations with other components of the membrane or to membrane-proximate intracellular or extracellular biomolecular assemblies, these lipid-constrained molecular models point the way to more realistic representations of cell membranes in electric fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Pullman B (ed) Intermolecular forces. Reidel, Dordrecht, pp 341–342

    Google Scholar 

  • Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  • Berger O, Edholm O, Jahnig F (1997) Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J 72:2002–2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berghöfer T, Eing C, Flickinger B, Hohenberger P, Wegner LH, Frey W, Nick P (2009) Nanosecond electric pulses trigger actin responses in plant cells. Biochem Biophys Res Commun 387:590–595

    Article  PubMed  Google Scholar 

  • Breton M, Mir LM (2012) Microsecond and nanosecond electric pulses in cancer treatments. Bioelectromagnetics 33:106–123

    Article  PubMed  Google Scholar 

  • Chopinet L, Etienne D, Rols MP (2014) AFM sensing cortical actin cytoskeleton destabilization during plasma membrane electropermeabilization. Cytoskeleton 71:587–594

    Article  Google Scholar 

  • DeBruin KA, Krassowka W (1999) Modeling electroporation in a single cell. I. Effects of field strength and rest potential. Biophys J 77:1213–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dehez F, Delemotte L, Kramar P, Miklavčič D, Tarek M (2014) Evidence of conducting hydrophobic nanopores across membranes in response to an electric field. J Phys Chem C 118:6752–6757

    Article  CAS  Google Scholar 

  • Essman U, Perera L, Berkowitz ML, Darden HTL, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  Google Scholar 

  • Fernández ML, Marshall G, Sagués F, Reigada R (2010) Structural and kinetic molecular dynamics study of electroporation in cholesterol-containing bilayers. J Phys Chem B 114:6855–6865

    Article  PubMed  Google Scholar 

  • Fernández ML, Reigada R (2014) Effects of dimethyl sulfoxide on lipid membrane electroporation. J Phys Chem B 118:9306–9312

    Article  PubMed  Google Scholar 

  • Fernández ML, Risk MR, Reigada R, Vernier PT (2012) Size-controlled nanopores in lipid membranes with stabilizing electric fields. Biochem Biophys Res Commun 423:325–330

    Article  PubMed  Google Scholar 

  • Gurtovenko AA, Lyulina AS (2014) Electroporation of asymmetric phospholipid bilayers. J Phys Chem B 118:9909–9918

    Article  CAS  PubMed  Google Scholar 

  • Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  • Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  CAS  PubMed  Google Scholar 

  • Ho MC, Levine ZA, Vernier PT (2013) Nanoscale, electric field-driven water bridges in vacuum gaps and lipid bilayers. J Membr Biol 246:793–801

    Article  CAS  PubMed  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38. http://www.ks.uiuc.edu/Research/vmd/

  • Ingólfsson HI, Melo MN, van Eerden FJ, Arnarez C, Lopez CA, Wassenaar TA, Periole X, de Vries AH, Tieleman DP, Marrink SJ (2014) Lipid organization of the plasma membrane. J Am Chem Soc 136:14554–14559

    Article  PubMed  Google Scholar 

  • Joshi RP, Hu Q (2010) Analysis of the cell membrane permeabilization mechanics and pore shape due to ultrashort electrical pulsing. Med Biol Eng Comput 48:837–844

    Article  PubMed  Google Scholar 

  • Kanthou C, Kranjc S, Sersa G, Tozer G, Zupanic A, Cemazar M (2006) The endothelial cytoskeleton as a target of electroporation-based therapies. Mol Cancer Ther 5:3145–3152

    Article  CAS  PubMed  Google Scholar 

  • Kiessling V, Crane JM, Tamm LK (2006) Transbilayer effect of raft-like domains in asymmetric planar bilayers measured by single molecule tracking. Biophys J 91:3313–3326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotnik T, Frey W, Sack M, Meglič SH, Peterka M, Miklavčič D (2015) Electroporation-based applications in biotechnology. Trends Biotechnol 33:480–488

    Article  CAS  PubMed  Google Scholar 

  • Kotulska M, Dyrka W, Sadowsi P (2010) Fluorescent methods in evaluation of nanopore conductivity and their computational validation. In: Pakhomov AG, Miklavčič D, Markov MS (eds) Advanced electroporation techniques in biology and medicine. CRC Press, Taylor & Francis Group, Boca Raton, pp 123–139

    Google Scholar 

  • Levine ZA, Vernier PT (2010) Life cycle of an electropore: field-dependent and field-independent steps in pore creation and annihilation. J Membr Biol 236:27–36

    Article  CAS  PubMed  Google Scholar 

  • Levine ZA, Vernier PT (2012) Calcium and phosphatidylserine inhibit lipid electropore formation and reduce pore lifetime. J Membr Biol 245:599–610

    Article  CAS  PubMed  Google Scholar 

  • Lyubartsev AP, Rabinovich AL (2016) Force field development for lipid membrane simulations. Biochim Biophys Acta 1828:2483–2497

    Article  Google Scholar 

  • MacCallum JL, Bennett WFD, Tieleman DP (2008) Distribution of amino acids in a lipid bilayer from computer simulations. Biophys J 94:3393–3404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marrink SJ, de Vries AH, Tieleman DP (2009) Lipids on the move: Simulations of membrane pores, domains, stalks and curves. Biochim Biophys Acta 1788:149–168

    Article  CAS  PubMed  Google Scholar 

  • Mihajlovic M, Lazaridies T (2010) Antimicrobial peptides in toroidal and cylindrical pores. Biochim Biophys Acta 1798:1485–1493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyamoto S, Kollman PA (1992) SETTLE: an analytical version of the SHAKE and RATTLE algorithms for rigid water models. J Comput Chem 13:952–962

    Article  CAS  Google Scholar 

  • Ollila OH, Pabst G (2016) Atomistic resolution structure and dynamics of lipid bilayers in simulations and experiments. Biochim Biophys Acta 1858:2512–2528

    Article  CAS  PubMed  Google Scholar 

  • Pakhomov AG, Bowman AM, Ibey BL, Andre FM, Pakhomova ON, Schoenbach KH (2009) Lipid nanopores can form stable, ion channel-like conduction pathway in cell membrane. Biochem Biophys Res Commun 385:181–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pakhomov AG, Pakhomova ON (2010) Nanopores: a distinct transmembrane passageway in electroporated cells. In: Pakhomov AG, Miklavčič D, Markov MS (eds) Advanced electroporation techniques in biology and medicine. CRC Press, Taylor & Francis Group, Boca Raton, pp 177–194

    Google Scholar 

  • Polak A, Bonhenry D, Dehez F, Kramar P, Miklavčič D, Tarek M (2013) On the electroporation thresholds of lipid bilayers: molecular dynamics simulation investigations. J Membr Biol 246:843–850

    Article  CAS  PubMed  Google Scholar 

  • Polak A, Tarek M, Tomšič M, Valant J, Poklar Ulrihe N, Jamnik A, Kramar P, Miklavčič D (2014) Electroporation of archaeal lipid membranes using MD simulations. Bioelectrochemistry 100:18–26

    Article  CAS  PubMed  Google Scholar 

  • Python http://www.python.org

  • R Development Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Raghupathy R, Anilkumar AA, Polley A, Singh PP, Yadav M, Johnson C, Suryawanshi S, Saikam V, Sawant SD, Panda A, Guo Z, Vishwakarma RA, Rao M, Mayor S (2015) Transbilayer lipid interactions mediate nanoclustering of lipid-anchored proteins. Cell 161:581–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reigada R (2014) Electroporation of heterogeneous lipid membranes. Biochim Biophys Acta 1838:814–821

    Article  CAS  PubMed  Google Scholar 

  • Risselada HJ, Mark AE, Marrink SJ (2008) Application of mean field boundary potentials in simulations of lipid vesicles. J Phys Chem B 112:7438–7447

    Article  PubMed  Google Scholar 

  • Rols MP, Teissié J (1992) Experimental evidence for the involvement of the cytoskeleton in mammalian cell electropermeabilization. Biochim Biophys Acta 1111:45–50

    Article  CAS  PubMed  Google Scholar 

  • Rosazza C, Escoffre JM, Zumbusch A, Rols MP (2011) The actin cytoskeleton has an active role in the electrotransfer of plasmid DNA in mammalian cells. Mol Ther 19:913–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sapay N, Bennett WFD, Tieleman DP (2009) Thermodynamics of flip-flop and desorption for a systematic series of phosphatidylcholine lipids. Soft Matter 5:3295–3302

    Article  CAS  Google Scholar 

  • Sengupta D, Leontiadou H, Mark AE, Marrink SJ (2008) Toroidal pores formed by antimicrobial peptides show significant disorder. Biochim Biophys Acta Biomembr 1778:2308–2317

    Article  CAS  Google Scholar 

  • Silve A, Brunet AG, Al-Sakere B, Ivorra A, Mir LM (2014) Comparison of the effects of the repetition rate between microsecond and nanosecond pulses: electropermeabilization-induced electro-desensitization? Bichem Biophys Acta 1840:2139–2151

    Article  CAS  Google Scholar 

  • Siwi Z, Gu Y, Spohr HA, Baur D, Wolf-Reber A, Spohr R, Apel P, Korchev YE (2002) Rectification and voltage gating of ion currents in a nanofabricated pore. Europhys Lett 60:349–355

    Article  Google Scholar 

  • Smith KC, Weaver JC (2011) Transmembrane molecular transport during versus after extremely large, nanosecond electric pulses. Biochem Biophys Res Commun 412:8–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Son RS, Smith KC, Gowrishankar TR, Vernier PT, Weaver JC (2014) Basic features of a cell electroporation model: Illustrative behavior for two very different pulses. J Membr Biol 247:1209–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stacey M, Fox P, Buescher S, Kolb J (2011) Nanosecond pulsed electric field induced cytoskeleton, nuclear membrane and telomere damage adversely impact cell survival. Bioelectrochemistry 82:131–134

    Article  CAS  PubMed  Google Scholar 

  • Stoddart D, Ayub M, Höfler L, Raychaudhuri P, Klingelhoefer JW, Maglia G, Heron A, Bayley H (2014) Functional truncated membrane pores. Proc Natl Acad Sci USA 111:2425–2430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugar IP, Neumann E (1984) Stochastic model for electric field-induced membrane pores electroporation. Biophys Chem 19:211–225

    Article  CAS  PubMed  Google Scholar 

  • Sun S, Yin G, Lee YK, Wong JT, Zhang TY (2011) Effects of deformability and thermal motion of lipid membrane on electroporation: by molecular dynamics simulations. Biochem Biophys Res Commun 404:684–688

    Article  CAS  PubMed  Google Scholar 

  • Tarek M (2005) Membrane electroporation: a molecular dynamics study. Biophys J 88:4045–4053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teissié J, Rols MP (1994) Manipulation of cell cytoskeleton affects the lifetime of cell membrane electropermeabilization. Ann N Y Acad Sci 720:98–110

    Article  PubMed  Google Scholar 

  • Tieleman DP (2004) The molecular basis of electroporation. BMC Biochem 5:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Thompson GL, Roth C, Tolstykh G, Kuipers M, Ibey BL (2014) Disruption of the actin cortex contributes to susceptibility of mammalian cells to nanosecond pulsed electric fields. Bioelectromagnetics 35:262–272

    Article  CAS  PubMed  Google Scholar 

  • Tsong T (1991) Electroporation of cell membranes. Biophys J 60:297–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weaver JC, Chizmadzhev YA (1996) Theory of electroporation: a review. Bioelectrochem Bioenerg 41:135–160

    Article  CAS  Google Scholar 

  • Weaver JC (2000) Electroporation of cells and tissues. IEEE Trans Plasma Sci 28:24–33

    Article  CAS  Google Scholar 

  • Yarmush ML, Golberg A, Serša G, Kotnik T, Miklavčič D (2014) Electroporation-based technologies for medicine: principles, applications, and challenges. Annu Rev Biomed Eng 16:295–320

    Article  CAS  PubMed  Google Scholar 

  • Ziegler MJ, Vernier PT (2008) Interface water dynamics and porating electric field for phospholipid bilayers. J Phys Chem B 112:13588–13596

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Computational resources were provided by the Centro de Cómputos de Alto Rendimiento (CeCAR) - Facultad de Ciencias Exactas y Naturales – UBA and ITBA. PTV was supported by the Frank Reidy Research Center for Bioelectrics and by the Air Force Office of Scientific Research (FA9550-14-1-0123 and MURI grant FA9550-15-1-0517 on “Nanoelectropulse-Induced Electromechanical Signaling and Control of Biological Systems,” administered through Old Dominion University). MLF and MR were supported in part by grants from Universidad de Buenos Aires (UBACyT GC 20620130100027BA), CONICET (PIP GI 11220110100379) and ITBA (ITBACyT 2015), and MR received additional support from IBM of Argentina. MLF and MR gratefully acknowledge the guidance of Professor G. Marshall.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Thomas Vernier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández, M.L., Risk, M.R. & Vernier, P.T. Electropore Formation in Mechanically Constrained Phospholipid Bilayers. J Membrane Biol 251, 237–245 (2018). https://doi.org/10.1007/s00232-017-0002-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-017-0002-y

Keywords

Navigation