Skip to main content

Advertisement

Log in

Trypanosoma cruzi Polyamine Transporter: Its Role on Parasite Growth and Survival Under Stress Conditions

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Trypanosoma cruzi is the etiological agent of Chagas disease, a major health problem in Latin America. Polyamines are polycationic compounds that play a critical role as regulators of cell growth and differentiation. In contrast with other protozoa, T. cruzi is auxotrophic for polyamines because of its inability to synthesize putrescine due to the lack of both, arginine and ornithine decarboxylase; therefore, the intracellular availability of polyamines depends exclusively on transport processes. In this work, the polyamine transporter TcPAT12 was overexpressed in T. cruzi epimastigotes demonstrating that growth rates at different concentrations of polyamines strongly depend on the regulation of the polyamine transport. In addition, parasites overexpressing TcPAT12 showed a highly increased resistance to hydrogen peroxide and the trypanocidal drugs nifurtimox and benznidazole, which act by oxidative stress and interfering the synthesis of polyamine derivatives, respectively. Finally, the presence of putative polyamine transporters was analyzed in T. cruzi, Trypanosoma brucei, and Leishmania major genomes identifying 3–6 genes in these trypanosomatids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aiyar A (2000) The use of CLUSTAL W and CLUSTAL X for multiple sequence alignment. Methods Mol Biol 132:221–241

    CAS  PubMed  Google Scholar 

  • Alcazar R, Tiburcio AF (2014) Plant polyamines in stress and development: an emerging area of research in plant sciences. Front Plant Sci 5:319

    Article  PubMed  PubMed Central  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Bacchi CJ, Vergara C, Garofalo J, Lipschik GY, Hutner SH (1979) Synthesis and content of polyamines in bloodstream Trypanosma brucei. J Protozool 26:484–488

    Article  CAS  PubMed  Google Scholar 

  • Bacchi CJ, Nathan HC, Hutner SH, McCann PP, Sjoerdsma A (1980) Polyamine metabolism: a potential therapeutic target in trypanosomes. Science 210:332–334

    Article  CAS  PubMed  Google Scholar 

  • Bachrach U, Brem S, Wertman SB, Schnur LF, Greenblatt CL (1979) Leishmania spp.: cellular levels and synthesis of polyamines during growth cycles. Exp Parasitol 48:457–463

    Article  CAS  PubMed  Google Scholar 

  • Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucl Acids Res 34:W369–W373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett MP, Burchmore RJ, Stich A, Lazzari JO, Frasch AC, Cazzulo JJ, Krishna S (2003) The trypanosomiases. Lancet 362:1469–1480

    Article  PubMed  Google Scholar 

  • Bouvier LA, Silber AM, Galvao Lopes C, Canepa GE, Miranda MR, Tonelli RR, Colli W, Alves MJ, Pereira CA (2004) Post genomic analysis of permeases from the amino acid/auxin family in protozoan parasites. Biochem Biophys Res Commun 321:547–556

    Article  CAS  PubMed  Google Scholar 

  • Brun R, Schonenberger M (1979) Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Short communication. Acta Trop 36:289–292

    CAS  PubMed  Google Scholar 

  • Camargo EP (1964) Growth and differentiation in Trypanosoma Cruzi. I. Origin of metacyclic trypanosomes in liquid media. Rev Inst Med Trop Sao Paulo 6:93–100

    CAS  PubMed  Google Scholar 

  • Carrillo C, Cejas S, Gonzalez NS, Algranati ID (1999) Trypanosoma cruzi epimastigotes lack ornithine decarboxylase but can express a foreign gene encoding this enzyme. FEBS Lett 454:192–196

    Article  CAS  PubMed  Google Scholar 

  • Carrillo C, Cejas S, Huber A, Gonzalez NS, Algranati ID (2003) Lack of arginine decarboxylase in Trypanosoma cruzi epimastigotes. J Eukaryot Microbiol 50:312–316

    Article  CAS  PubMed  Google Scholar 

  • Carrillo C, Canepa GE, Algranati ID, Pereira CA (2006) Molecular and functional characterization of a spermidine transporter (TcPAT12) from Trypanosoma cruzi. Biochem Biophys Res Commun 344:936–940

    Article  CAS  PubMed  Google Scholar 

  • Chagas C (1909) Nova Tripanosomiaze Humana: estudos sobre amorfolojia e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n. sp., ajente etiolojico de uma nova entidade mórbida do homem. Mem Inst Oswaldo Cruz 1:159–218

    Article  Google Scholar 

  • Colotti G, Ilari A (2011) Polyamine metabolism in Leishmania: from arginine to trypanothione. Amino Acids 40:269–285

    Article  CAS  PubMed  Google Scholar 

  • Cupello MP, Souza CF, Buchensky C, Soares JB, Laranja GA, Coelho MG, Cricco JA, Paes MC (2011) The heme uptake process in Trypanosoma cruzi epimastigotes is inhibited by heme analogues and by inhibitors of ABC transporters. Acta Trop 120:211–218

    Article  CAS  PubMed  Google Scholar 

  • Fairlamb AH, Blackburn P, Ulrich P, Chait BT, Cerami A (1985) Trypanothione: a novel bis(glutathionyl)spermidine cofactor for glutathione reductase in trypanosomatids. Science 227:1485–1487

    Article  CAS  PubMed  Google Scholar 

  • Hall BS, Bot C, Wilkinson SR (2011) Nifurtimox activation by trypanosomal type I nitroreductases generates cytotoxic nitrile metabolites. J Biol Chem 286:13088–13095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasne MP, Coppens I, Soysa R, Ullman B (2010) A high-affinity putrescine-cadaverine transporter from Trypanosoma cruzi. Mol Microbiol 76:78–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Igarashi K, Kashiwagi K (2000) Polyamines: mysterious modulators of cellular functions. Biochem Biophys Res Commun 271:559–564

    Article  CAS  PubMed  Google Scholar 

  • Magnes C, Fauland A, Gander E, Narath S, Ratzer M, Eisenberg T, Madeo F, Pieber T, Sinner F (2014) Polyamines in biological samples: rapid and robust quantification by solid-phase extraction online-coupled to liquid chromatography-tandem mass spectrometry. J Chromatogr A 1331:44–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  • Pereira CA, Alonso GD, Paveto MC, Flawia MM, Torres HN (1999) L-arginine uptake and L-phosphoarginine synthesis in Trypanosoma cruzi. J Eukaryot Microbiol 46:566–570

    Article  CAS  PubMed  Google Scholar 

  • Pereira CA, Alonso GD, Ivaldi S, Silber AM, Alves MJ, Torres HN, Flawia MM (2003) Arginine kinase overexpression improves Trypanosoma cruzi survival capability. FEBS Lett 554:201–205

    Article  CAS  PubMed  Google Scholar 

  • Rassi A Jr, Rassi A, Marin-Neto JA (2010) Chagas disease. Lancet 375:1388–1402

    Article  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trochine A, Creek DJ, Faral-Tello P, Barrett MP, Robello C (2014) Benznidazole biotransformation and multiple targets in Trypanosoma cruzi revealed by metabolomics. PLoS Negl Trop Dis 8:e2844

    Article  PubMed  PubMed Central  Google Scholar 

  • Vazquez MP, Levin MJ (1999) Functional analysis of the intergenic regions of TcP2beta gene loci allowed the construction of an improved Trypanosoma cruzi expression vector. Gene 239:217–225

    Article  CAS  PubMed  Google Scholar 

  • Young GB, Jack DL, Smith DW, Saier MH Jr (1999) The amino acid/auxin:proton symport permease family. Biochim Biophys Acta 1415:306–322

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Special thanks to Lic. Fabio di Girolamo (IDIM-CONICET) for technical support. This work was supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, PIP 2011-0263, and 2013-0664), Agencia Nacional de Promoción Científica y Tecnológica (FONCYT PICT 2012-0559 and 2013-2218). CAP and MRM are members of the career of scientific investigator; CR, MS, and EVV are research fellows from CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio A. Pereira.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reigada, C., Sayé, M., Vera, E.V. et al. Trypanosoma cruzi Polyamine Transporter: Its Role on Parasite Growth and Survival Under Stress Conditions. J Membrane Biol 249, 475–481 (2016). https://doi.org/10.1007/s00232-016-9888-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-016-9888-z

Keywords

Navigation