Skip to main content
Log in

Down-Regulation of ClC-3 Expression Reduces Epidermal Stem Cell Migration by Inhibiting Volume-Activated Chloride Currents

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

ClC-3, a member of the ClC chloride (Cl) channel family, has recently been proposed as the primary Cl channel involved in cell volume regulation. Changes in cell volume influence excitability, contraction, migration, pathogen-host interactions, cell proliferation, and cell death processes. In this study, expression and function of ClC-3 channels were investigated during epidermal stem cell (ESC) migration. We observed differential expression of CLC-3 regulates migration of ESCs. Further, whole-cell patch-clamp recordings and image analysis demonstrated ClC-3 expression affected volume-activated Cl current (I Cl,Vol) within ESCs. Live cell imaging systems, designed to observe cellular responses to overexpression and suppression of ClC-3 in real time, indicated ClC-3 may regulate ESC migratory dynamics. We employed IMARIS software to analyze the velocity and distance of ESC migration in vitro to demonstrate the function of ClC-3 channel in ESCs. As our data suggest volume-activated Cl channels play a vital role in migration of ESCs, which contribute to skin repair by migrating from neighboring unwounded epidermis infundibulum, hair follicle or sebaceous glands, ClC-3 may represent a new and valuable target for stem cell therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arnaiz I, Johnson MH, Cook DI, Day ML (2013) Changing expression of chloride channels during preimplantation mouse development. Reproduction 145:73–84

    Article  CAS  PubMed  Google Scholar 

  • Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M (2008) Growth factors and cytokines in wound healing. Wound Repair Regen 16:585–601

    Article  PubMed  Google Scholar 

  • Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E (2004) Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118:635–648

    Article  CAS  PubMed  Google Scholar 

  • Brem H, Tomic-Canic M (2007) Cellular and molecular basis of wound healing in diabetes. J Clin Invest 117:1219–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Wang L, Jacob TJ (1999) Association of intrinsic pICln with volume-activated Cl- current and volume regulation in a native epithelial cell. Am J Physiol 276:C182–C192

    CAS  PubMed  Google Scholar 

  • Diegelmann RF, Evans MC (2004) Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 9:283–289

    Article  CAS  PubMed  Google Scholar 

  • Duan D, Zhong J, Hermoso M, Satterwhite CM, Rossow CF, Hatton WJ, Yamboliev I, Horowitz B, Hume JR (2001) Functional inhibition of native volume-sensitive outwardly rectifying anion channels in muscle cells and Xenopus oocytes by anti-ClC-3 antibody. J Physiol 531:437–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrengruber MU, Deranleau DA, Coates TD (1996) Shape oscillations of human neutrophil leukocytes: characterization and relationship to cell motility. J Exp Biol 199:741–747

    CAS  PubMed  Google Scholar 

  • Ernest NJ, Weaver AK, Van Duyn LB, Sontheimer HW (2005) Relative contribution of chloride channels and transporters to regulatory volume decrease in human glioma cells. Am J Physiol Cell Physiol 288:C1451–C1460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falanga V (2005) Wound healing and its impairment in the diabetic foot. Lancet 366:1736–1743

    Article  PubMed  Google Scholar 

  • Fu X, Li H (2009) Mesenchymal stem cells and skin wound repair and regeneration: possibilities and questions. Cell Tissue Res 335:317–321

    Article  PubMed  Google Scholar 

  • Fu X, Sun X, Li X, Sheng Z (2001) Dedifferentiation of epidermal cells to stem cells in vivo. Lancet 358:1067–1068

    Article  CAS  PubMed  Google Scholar 

  • Guan YY, Wang GL, Zhou JG (2006) The ClC-3 Cl- channel in cell volume regulation, proliferation and apoptosis in vascular smooth muscle cells. Trends Pharmacol Sci 27:290–296

    Article  CAS  PubMed  Google Scholar 

  • Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453:314–321

    Article  CAS  PubMed  Google Scholar 

  • Hara-Chikuma M, Yang BX, Sonawane ND, Sasaki S, Uchida S, Verkman AS (2005) ClC-3 chloride channels facilitate endosomal acidification and chloride accumulation. J Biol Chem 280:1241–1247

    Article  CAS  PubMed  Google Scholar 

  • Hart J (2002) Inflammation. 1: its role in the healing of acute wounds. J Wound Care 11:205–209

    Article  CAS  PubMed  Google Scholar 

  • Heng BC, Cao T, Liu H, Phan TT (2005) Directing stem cells into the keratinocyte lineage in vitro. Exp Dermatol 14:1–16

    Article  CAS  PubMed  Google Scholar 

  • Huang JB, Kindzelskii AL, Clark AJ, Petty HR (2004) Identification of channels promoting calcium spikes and waves in HT1080 tumor cells: their apparent roles in cell motility and invasion. Cancer Res 64:2482–2489

    Article  CAS  PubMed  Google Scholar 

  • Huber SM, Butz L, Stegen B, Klumpp L, Klumpp D, Eckert F (2015) Role of ion channels in ionizing radiation-induced cell death. Biochim Biophys Acta 1848:2657–2664

    Article  CAS  PubMed  Google Scholar 

  • Isbilen B, Fraser SP, Djamgoz MB (2006) Docosahexaenoic acid (omega-3) blocks voltage-gated sodium channel activity and migration of MDA-MB-231 human breast cancer cells. Int J Biochem Cell Biol 38:2173–2182

    Article  CAS  PubMed  Google Scholar 

  • Kunzelmann K (2005) Ion channels and cancer. J Membr Biol 205:159–173

    Article  CAS  PubMed  Google Scholar 

  • Lang F, Busch GL, Ritter M, Volkl H, Waldegger S, Gulbins E, Haussinger D (1998) Functional significance of cell volume regulatory mechanisms. Physiol Rev 78:247–306

    CAS  PubMed  Google Scholar 

  • Lavker RM, Sun TT (1982) Heterogeneity in epidermal basal keratinocytes: morphological and functional correlations. Science 215:1239–1241

    Article  CAS  PubMed  Google Scholar 

  • Lavker RM, Sun TT (2000) Epidermal stem cells: properties, markers, and location. Proc Natl Acad Sci USA 97:13473–13475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemonnier L, Shuba Y, Crepin A, Roudbaraki M, Slomianny C, Mauroy B, Nilius B, Prevarskaya N, Skryma R (2004) Bcl-2-dependent modulation of swelling-activated Cl- current and ClC-3 expression in human prostate cancer epithelial cells. Cancer Res 64:4841–4848

    Article  CAS  PubMed  Google Scholar 

  • Levy V, Lindon C, Zheng Y, Harfe BD, Morgan BA (2007) Epidermal stem cells arise from the hair follicle after wounding. FASEB J 21:1358–1366

    Article  CAS  PubMed  Google Scholar 

  • Mao J, Chen L, Xu B, Wang L, Li H, Guo J, Li W, Nie S, Jacob TJ, Wang L (2008) Suppression of ClC-3 channel expression reduces migration of nasopharyngeal carcinoma cells. Biochem Pharmacol 75:1706–1716

    Article  CAS  PubMed  Google Scholar 

  • Nilius B, Droogmans G (2003) Amazing chloride channels: an overview. Acta Physiol Scand 177:119–147

    Article  CAS  PubMed  Google Scholar 

  • O’Shea KS (2004) Self-renewal vs. differentiation of mouse embryonic stem cells. Biol Reprod 71:1755–1765

    Article  PubMed  Google Scholar 

  • Peng LH, Mao ZY, Qi XT, Chen X, Li N, Tabata Y, Gao JQ (2013) Transplantation of bone-marrow-derived mesenchymal and epidermal stem cells contribute to wound healing with different regenerative features. Cell Tissue Res 352:573–583

    Article  CAS  PubMed  Google Scholar 

  • Qiu Z, Dubin AE, Mathur J, Tu B, Reddy K, Miraglia LJ, Reinhardt J, Orth AP, Patapoutian A (2014) SWELL1, a plasma membrane protein, is an essential component of volume-regulated anion channel. Cell 157:447–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ransom CB, O’Neal JT, Sontheimer H (2001) Volume-activated chloride currents contribute to the resting conductance and invasive migration of human glioma cells. J Neurosci 21:7674–7683

    CAS  PubMed  Google Scholar 

  • Reiisi S, Esmaeili F, Shirazi A (2010) Isolation, culture and identification of epidermal stem cells from newborn mouse skin. In Vitro Cell Dev Biol Anim 46:54–59

    Article  PubMed  Google Scholar 

  • Rennekampff HO, Hansbrough JF, Kiessig V, Dore C, Sticherling M, Schroder JM (2000) Bioactive interleukin-8 is expressed in wounds and enhances wound healing. J Surg Res 93:41–54

    Article  CAS  PubMed  Google Scholar 

  • Rohrbough J, Lamb FS, Nguyen H-N (2015) Regulation of ClC-3 Cl/H+ transport and “gating” transients by chloride pathway residues and external protons. Biophys J 108:440a–441a

    Article  Google Scholar 

  • Salazar G, Love R, Styers ML, Werner E, Peden A, Rodriguez S, Gearing M, Wainer BH, Faundez V (2004) AP-3-dependent mechanisms control the targeting of a chloride channel (ClC-3) in neuronal and non-neuronal cells. J Biol Chem 279:25430–25439

    Article  CAS  PubMed  Google Scholar 

  • Sardini A, Amey JS, Weylandt KH, Nobles M, Valverde MA, Higgins CF (2003) Cell volume regulation and swelling-activated chloride channels. Biochim Biophys Acta 1618:153–162

    Article  CAS  PubMed  Google Scholar 

  • Schneider SW, Pagel P, Rotsch C, Danker T, Oberleithner H, Radmacher M, Schwab A (2000) Volume dynamics in migrating epithelial cells measured with atomic force microscopy. Pflugers Arch 439:297–303

    Article  CAS  PubMed  Google Scholar 

  • Sontheimer H (2008) An unexpected role for ion channels in brain tumor metastasis. Exp Biol Med (Maywood) 233:779–791

    Article  CAS  Google Scholar 

  • Stock C, Schwab A (2015) Ion channels and transporters in metastasis. Biochim Biophys Acta 1848:2638–2646

    Article  CAS  PubMed  Google Scholar 

  • Sylvia CJ (2003) The role of neutrophil apoptosis in influencing tissue repair. J Wound Care 12:13–16

    Article  CAS  PubMed  Google Scholar 

  • Tiede S, Kloepper JE, Bodo E, Tiwari S, Kruse C, Paus R (2007) Hair follicle stem cells: walking the maze. Eur J Cell Biol 86:355–376

    Article  CAS  PubMed  Google Scholar 

  • Ulloa-Montoya F, Verfaillie CM, Hu WS (2005) Culture systems for pluripotent stem cells. J Biosci Bioeng 100:12–27

    Article  CAS  PubMed  Google Scholar 

  • Voss FK, Ullrich F, Munch J, Lazarow K, Lutter D, Mah N, Andrade-Navarro MA, von Kries JP, Stauber T, Jentsch TJ (2014) Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC. Science 344:634–638

    Article  CAS  PubMed  Google Scholar 

  • Voura EB, Sandig M, Kalnins VI, Siu C (1998) Cell shape changes and cytoskeleton reorganization during transendothelial migration of human melanoma cells. Cell Tissue Res 293:375–387

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Chen L, Jacob TJ (2000) The role of ClC-3 in volume-activated chloride currents and volume regulation in bovine epithelial cells demonstrated by antisense inhibition. J Physiol 524(Pt 1):63–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang GX, Hatton WJ, Wang GL, Zhong J, Yamboliev I, Duan D, Hume JR (2003) Functional effects of novel anti-ClC-3 antibodies on native volume-sensitive osmolyte and anion channels in cardiac and smooth muscle cells. Am J Physiol Heart Circ Physiol 285:H1453–H1463

    Article  CAS  PubMed  Google Scholar 

  • Wang LW, Chen LX, Jacob T (2004) ClC-3 expression in the cell cycle of nasopharyngeal carcinoma cells. Sheng Li Xue Bao 56:230–236

    CAS  PubMed  Google Scholar 

  • Weylandt KH, Nebrig M, Jansen-Rosseck N, Amey JS, Carmena D, Wiedenmann B, Higgins CF, Sardini A (2007) ClC-3 expression enhances etoposide resistance by increasing acidification of the late endocytic compartment. Mol Cancer Ther 6:979–986

    Article  CAS  PubMed  Google Scholar 

  • Zhang JJ, Jacob TJ (1997) Three different Cl- channels in the bovine ciliary epithelium activated by hypotonic stress. J Physiol 499(Pt 2):379–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zifarelli G, Pusch M (2007) CLC chloride channels and transporters: a biophysical and physiological perspective. Rev Physiol Biochem Pharmacol 158:23–76

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank our colleagues for critical advices in the preparation of this manuscript. The research was supported by Grants from the National Natural Science Foundation of China (No. 81272121).

Author Contributions

Shirong Li, Chuan Cao, and Hongli Li conceived and designed the experiments; Rui Guo, Fuqiang Pan, Yanping Tian, and Hongli Li performed the experiments; Rui Guo and Chuan Cao analyzed the data; Rui Guo and Chuan Cao wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shirong Li or Chuan Cao.

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, R., Pan, F., Tian, Y. et al. Down-Regulation of ClC-3 Expression Reduces Epidermal Stem Cell Migration by Inhibiting Volume-Activated Chloride Currents. J Membrane Biol 249, 281–292 (2016). https://doi.org/10.1007/s00232-015-9867-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-015-9867-9

Keywords

Navigation