Skip to main content

Advertisement

Log in

Spectroscopic and Microscopic Studies on the Mechanism of Mitochondrial Toxicity Induced by CdTe QDs Modified with Different Ligands

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Quantum dots (QDs) are increasingly applied in sensing, drug delivery, biomedical imaging, electronics industries, etc. Consequently, it is urgently required to examine their potential threat to humans and the environment. In the present work, the toxicity of CdTe QDs with nearly identical maximum emission wavelength but modified with two different ligands (MPA and BSA) to mitochondria was investigated using flow cytometry, spectroscopic, and microscopic methods. The results showed that QDs induced mitochondrial permeability transition (MPT), which resulted in mitochondrial swelling, collapse of the membrane potential, inner membrane permeability to H+ and K+, the increase of membrane fluidity, depression of respiration, alterations of ultrastructure, and the release of cytochrome c. Furthermore, the protective effects of CsA and EDTA confirmed QDs might be able to induce MPT via a Ca2+-dependent domain. However, the difference between the influence of CdTe QDs and that of Cd2+ on mitochondrial membrane fluidity indicated the release of Cd2+ was not the sole reason that QDs induced mitochondrial dysfunction, which might be related to the nanoscale effect of QDs. Compared with MPA-CdTe QDs, BSA-CdTe QDs had a greater effect on the mitochondrial swelling, membrane fluidity, and permeabilization to H+ and K+ by mitochondrial inner membrane, which was caused the fact that BSA was more lipophilic than MPA. This study provides an important basis for understanding the mechanism of the toxicity of CdTe QDs to mitochondria, and valuable information for safe use of QDs in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

HP:

Hematoporphyrin

MPA :

3-Mercaptopropionic acid

BSA:

Bovine serum albumin

CsA:

Cyclosporin A

QDs:

Quantum dots

MPT:

Mitochondrial permeability transition

ROS:

Reactive oxygen species

CNTs:

Carbon nanotubes

References

  • Atay Z, Biver T, Corti A, Eltugral N, Lorenzini E, Masini M, Paolicchi A, Pucci A, Ruggeri G, Secco F, Venturini M (2010) Non-covalent interactions of cadmium sulphide and gold nanoparticles with DNA. J Nanopart Res 12:2241–2253

    Article  CAS  Google Scholar 

  • Bernardi P, Vassanelli S, Veronese P, Colonna R, Szabo I, Zoratti M (1992) Modulation of the mitochondrial permeability transition pore. Effect of protons and divalent cations. J Biol Chem 267:2934–2939

    CAS  PubMed  Google Scholar 

  • Bernardi P, Broekemeier KM, Pfeiffer DR (1994) Recent progress on regulation of the mitochondrial permeability transition pore; a cyclosporin-sensitive pore in the inner mitochondrial membrane. J Bioenerg Biomembr 26:509–517

    Article  CAS  PubMed  Google Scholar 

  • Chan WH, Shiao NH, Lu PZ (2006) CdSe quantum dots induce apoptosis in human neuroblastoma cells via mitochondrial-dependent pathways and inhibition of survival signals. Toxicol Lett 167:191–200

    Article  CAS  PubMed  Google Scholar 

  • Chibli H, Carlini L, Park S, Dimitrijevic NM, Nadeau JL (2011) Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation. Nanoscale 3:2552–2559

    Article  CAS  PubMed  Google Scholar 

  • Clift MJ, Brandenberger C, Rothen-Rutishauser B, Brown DM, Stone V (2011a) The uptake and intracellular fate of a series of different surface coated quantum dots in vitro. Toxicology 286:58–68

    Article  CAS  PubMed  Google Scholar 

  • Clift MJ, Varet J, Hankin SM, Brownlee B, Davidson AM, Brandenberger C, Rothen-Rutishauser B, Brown DM, Stone V (2011b) Quantum dot cytotoxicity in vitro: an investigation into the cytotoxic effects of a series of different surface chemistries and their core/shell materials. Nanotoxicology 5:664–674

    Article  CAS  PubMed  Google Scholar 

  • Deckwerth TL, Johnson EM (1993) Temporal analysis of events associated with programmed cell death (apoptosis) of sympathetic neurons deprived of nerve growth factor. J Cell Biol 123:1207–1222

    Article  CAS  PubMed  Google Scholar 

  • Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18

    Article  CAS  Google Scholar 

  • Donaldson K, Brown D, Clouter A, Duffin R, MacNee W, Renwick L, Tran L, Stone V (2002) The pulmonary toxicology of ultrafine particles. J Aerosol Med 15:213–220

    Article  CAS  PubMed  Google Scholar 

  • Ekimov A, Onushchenko A (1981) Quantum size effect in three-dimensional microscopic semiconductor crystals. ZhETF Pis ma Redaktsiiu 34:363

    CAS  Google Scholar 

  • Fernandes MA, Custódio J, Santos MS, Moreno AJ, Vicente JA (2006) Tetrandrine concentrations not affecting oxidative phosphorylation protect rat liver mitochondria from oxidative stress. Mitochondrion 6:176–185

    Article  CAS  PubMed  Google Scholar 

  • Freyre-Fonseca V, Delgado-Buenrostro NL, Gutiérrez-Cirlos EB, Calderón-Torres CM, Cabellos-Avelar T, Sánchez-Pérez Y, Pinzón E, Torres I, Molina-Jijón E, Zazueta C (2011) Titanium dioxide nanoparticles impair lung mitochondrial function. Toxicol Lett 202:111–119

    Article  CAS  PubMed  Google Scholar 

  • Gerencser AA, Doczi J, Töröcsik B, Bossy-Wetzel E, Adam-Vizi V (2008) Mitochondrial swelling measurement in situ by optimized spatial filtering: astrocyte-neuron differences. Biophys J 95:2583–2598

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Halestrap A, Connern C, Griffiths E, Kerr P (1997) Cyclosporin A binding to mitochondrial cyclophilin inhibits the permeability transition pore and protects hearts from ischaemia/reperfusion injury. In Detection of mitochondrial diseases. Springer, New York, pp 167–172

  • Han X, Lai L, Tian F, Jiang FL, Xiao Q, Li Y, Yu Q, Li D, Wang J, Zhang Q (2012) Toxicity of CdTe quantum dots on yeast Saccharomyces cerevisiae. Small 8:2680–2689

    Article  CAS  PubMed  Google Scholar 

  • Henze K, Martin W (2003) Evolutionary biology: essence of mitochondria. Nature 426:127–128

    Article  CAS  PubMed  Google Scholar 

  • Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T, Yasuhara M, Suzuki K, Yamamoto K (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4:2163–2169

    Article  CAS  Google Scholar 

  • Isenberg JS, Klaunig JE (2000) Role of the mitochondrial membrane permeability transition (MPT) in rotenone-induced apoptosis in liver cells. Toxicol Sci 53:340–351

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Kuroda S, Tada M, Houkin K, Iwasaki Y, Abe H (2003) Calcium-induced mitochondrial swelling and cytochrome c release in the brain: its biochemical characteristics and implication in ischemic neuronal injury. Brain Res 960:62–70

    Article  CAS  PubMed  Google Scholar 

  • Lesnefsky EJ, Moghaddas S, Tandler B, Kerner J, Hoppel CL (2001) Mitochondrial dysfunction in cardiac disease: ischemia–reperfusion, aging, and heart failure. J Mol Cell Cardiol 33:1065–1089

    Article  CAS  PubMed  Google Scholar 

  • Leutwyler WK, Bürgi SL, Burgl H (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933

    Article  Google Scholar 

  • Li J, Zhang Y, Xiao Q, Tian F, Liu X, Li R, Zhao G, Jiang F, Liu Y (2011a) Mitochondria as target of quantum dots toxicity. J Hazard Mater 194:440–444

    Article  CAS  PubMed  Google Scholar 

  • Li JH, Zhang Y, Xiao Q, Tian FF, Liu XR, Li R, Zhao GY, Jiang FL, Liu Y (2011b) Mitochondria as target of quantum dots toxicity. J Hazard Mater 194:440–444

    Article  CAS  PubMed  Google Scholar 

  • Li JH, Liu XR, Zhang Y, Tian FF, Zhao GY, Jiang FL, Liu Y (2012) Toxicity of nano zinc oxide to mitochondria. Toxicol Res 1:137–144

    Article  Google Scholar 

  • Liu XR, Li JH, Zhang Y, Ge YS, Tian FF, Dai J, Jiang FL, Liu Y (2011) Mitochondrial permeability transition induced by different concentrations of zinc. J Membr Biol 244:105–112

    Article  CAS  PubMed  Google Scholar 

  • Loss D, DiVincenzo DP (1998) Quantum computation with quantum dots. Phys Rev A 57:120

    Article  CAS  Google Scholar 

  • Lovrić J, Cho SJ, Winnik FM, Maysinger D (2005) Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem Biol 12:1227–1234

    Article  PubMed  Google Scholar 

  • Lu ZS, Li CM, Bao HF, Qiao Y, Toh YH, Yang X (2008) Mechanism of antimicrobial activity of CdTe quantum dots. Langmuir 24:5445–5452

    Article  CAS  PubMed  Google Scholar 

  • McBride HM, Neuspiel M, Wasiak S (2006) Mitochondria: more than just a powerhouse. Curr Biol 16:R551–R560

    Article  CAS  PubMed  Google Scholar 

  • Michalet X, Pinaud F, Bentolila L, Tsay J, Doose S, Li J, Sundaresan G, Wu A, Gambhir S, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mortensen LJ, Jatana S, Gelein R, De Benedetto A, de Mesy Bentley KL, Beck LA, Elder A, DeLouise LA (2013) Quantification of quantum dot murine skin penetration with UVR barrier impairment. Nanotoxicology 7:1386–1398

    Article  CAS  PubMed  Google Scholar 

  • Murray CB, Kagan C, Bawendi M (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 30:545–610

    Article  CAS  Google Scholar 

  • Narukawa Y, Kawakami Y, Funato M, Fujita S, Fujita S, Nakamura S (1997) Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm. Appl Phys Lett 70:981–983

    Article  CAS  Google Scholar 

  • Neibert KD, Maysinger D (2012) Mechanisms of cellular adaptation to quantum dots-the role of glutathione and transcription factor EB. Nanotoxicology 6:249–262

    Article  CAS  PubMed  Google Scholar 

  • Nozik A (2002) Quantum dot solar cells. Phys E 14:115–120

    Article  CAS  Google Scholar 

  • Passarella S, Atlante A, Valenti D, de Bari L (2003) The role of mitochondrial transport in energy metabolism. Mitochondrion 2:319–343

    Article  CAS  PubMed  Google Scholar 

  • Petronilli V, Šileikytė J, Zulian A, Dabbeni-Sala F, Jori G, Gobbo S, Tognon G, Nikolov P, Bernardi P, Ricchelli F (2009) Switch from inhibition to activation of the mitochondrial permeability transition during hematoporphyrin-mediated photooxidative stress: unmasking pore-regulating external thiols. Biochim Biophys Acta (BBA) Bioenerg 1787:897–904

    Article  CAS  Google Scholar 

  • Pulskamp K, Diabaté S, Krug HF (2007) Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168:58–74

    Article  CAS  PubMed  Google Scholar 

  • Ricchelli F, Gobbo S, Moreno G, Salet C (1999) Changes of the fluidity of mitochondrial membranes induced by the permeability transition. Biochemistry 38:9295–9300

    Article  CAS  PubMed  Google Scholar 

  • Ricchelli F, Jori G, Gobbo S, Nikolov P, Petronilli V (2005) Discrimination between two steps in the mitochondrial permeability transition process. Int J Biochem Cell Biol 37:1858–1868

    Article  CAS  PubMed  Google Scholar 

  • Smiley ST, Reers M, Mottola-Hartshorn C, Lin M, Chen A, Smith TW, Steele GD, Chen LB (1991) Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc Natl Acad Sci 88:3671–3675

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stensberg MC, Madangopal R, Yale G, Wei Q, Ochoa-Acuña H, Wei A, Mclamore ES, Rickus J, Porterfield DM, Sepúlveda MS (2014) Silver nanoparticle-specific mitotoxicity in Daphnia magna. Nanotoxicology 8:833–842

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Li Y, Liu X, Jin M, Zhang L, Du Z, Guo C, Huang P, Sun Z (2011) Cytotoxicity and mitochondrial damage caused by silica nanoparticles. Toxicol In Vitro 25:1619–1629

    Article  CAS  PubMed  Google Scholar 

  • Teodoro JS, Simões AM, Duarte FV, Rolo AP, Murdoch RC, Hussain SM, Palmeira CM (2011) Assessment of the toxicity of silver nanoparticles in vitro: a mitochondrial perspective. Toxicol In Vitro 25:664–670

    Article  CAS  PubMed  Google Scholar 

  • Vannoy CH, Leblanc RM (2010) Effects of DHLA-capped CdSe/ZnS quantum dots on the fibrillation of human serum albumin. J Phys Chem B 114:10881–10888

    Article  CAS  PubMed  Google Scholar 

  • Werlin R, Priester JH, Mielke RE, Kramer S, Jackson S, Stoimenov PK, Stucky GD, Cherr GN, Orias E, Holden PA (2011) Biomagnification of cadmium selenide quantum dots in a simple experimental microbial food chain. Nat Nanotechnol 6:65–71

    Article  CAS  PubMed  Google Scholar 

  • Xiao J, Kai G, Chen X (2012) Effect of CdTe QDs on the protein-drug interactions. Nanotoxicology 6:304–314

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Lan J, Xu Z, Chen T, Zhao T, Cheng T, Shen J, Lv S, Zhang H (2014) Toxicity and biodistribution of aqueous synthesized ZnS and ZnO quantum dots in mice. Nanotoxicology 8:107–116

    Article  CAS  PubMed  Google Scholar 

  • Zamzami N, Marchetti P, Castedo M, Hirsch T, Susin SA, Masse B, Kroemer G (1996) Inhibitors of permeability transition interfere with the disruption of the mitochondrial transmembrane potential during apoptosis. FEBS Lett 384:53–57

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Li JH, Liu XR, Jiang FL, Tian FF, Liu Y (2011) Spectroscopic and microscopic studies on the mechanisms of mitochondrial toxicity induced by different concentrations of cadmium. J Membr Biol 241:39–49

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Gao S, Ying JY (2007) Synthesis and cell-imaging applications of glutathione-capped CdTe quantum dots. Adv Mater 19:376–380

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from Chinese 973 Program (Grant No. 2011CB933600), National Science Fund for Distinguished Young Scholars of China (Grant No. 21225313), Educational Commission of Hubei Province of China (Grant No. Q20141302), National Natural Science Foundation of China (Grant Nos. 21403017, 21303126), Large-scale Instrument And Equipment Sharing Foundation of Wuhan University and Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng-Lei Jiang or Yi Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 706 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, L., Jin, JC., Xu, ZQ. et al. Spectroscopic and Microscopic Studies on the Mechanism of Mitochondrial Toxicity Induced by CdTe QDs Modified with Different Ligands. J Membrane Biol 248, 727–740 (2015). https://doi.org/10.1007/s00232-015-9785-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-015-9785-x

Keywords

Navigation