Skip to main content
Log in

A Double-Pulse Approach For Electrotransfection

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Gene transfer and expression can be obtained by delivering calibrated electric pulses on cells in the presence of plasmids coding for the activity of interest. The electric treatment affects the plasma membrane and induces the formation of a transient complex between nucleic acids and the plasma membrane. It results in a delivery of the plasmid in the cytoplasm. Expression is only obtained if the plasmid is translocated inside the nucleus. This is a key limit in the process. We previously showed that delivery of a high-field short-duration electric pulse was inducing a structural alteration of the nuclear envelope. This study investigates if the double-pulse approach (first pulse to transfer the plasmid to the cytoplasm, and second pulse to induce the structural alteration of the envelope) was a way to enhance the protein expression using the green fluorescent protein as a reporter. We observed that not only the double-pulse approach induced the transfection of a lower number of cells but moreover, these transfected cells were less fluorescent than the cells treated only with the first pulse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Badding MA et al (2013) Proteomic and functional analyses of protein-DNA complexes during gene transfer. Mol Ther 21:775–785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Batista Napotnik T et al (2012) Nanosecond electric pulses cause mitochondrial membrane permeabilization in Jurkat cells. Bioelectromagnetics 33:257–264

    Article  PubMed  Google Scholar 

  • Beebe SJ et al (2003) Diverse effects of nanosecond pulsed electric fields on cells and tissues. DNA Cell Biol 22:785–796

    Article  CAS  PubMed  Google Scholar 

  • Bellard E, Teissie J (2009a) Double-pulse approach of electrogenotherapy: an analysis at the single cell level. IEEE T Plasma Sci 37:538–544

  • Bellard E, Teissie J (2009b) Double pulse approach of electropulsation: a fluorescence analysis of the nucleus perturbation at the single cell level. IEEE T Dielect El In 16:1267–1272

  • Cadossi R et al (2014) Locally enhanced chemotherapy by electroporation: clinical experiences and perspective of use of electrochemotherapy. Future Oncol 10:877–890

    Article  CAS  PubMed  Google Scholar 

  • Cepurniene K et al (2010) Influence of plasmid concentration on DNA electrotransfer in vitro using high-voltage and low-voltage pulses. J Membr Biol 236:81–85

    Article  CAS  PubMed  Google Scholar 

  • Chopinet L et al (2013) Nanosecond electric pulse effects on gene expression. J Membr Biol 246:851–859

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cohen RN et al (2009) Quantification of plasmid DNA copies in the nucleus after lipoplex and polyplex transfection. J Control Release 135:166–174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Escoffre JM et al (2010) Gene transfer: how can the biological barriers be overcome? J Membr Biol 236:61–74

    Article  CAS  PubMed  Google Scholar 

  • Esser AT et al (2010) Mechanisms for the intracellular manipulation of organelles by conventional electroporation. Biophys J 98:2506–2514

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gabriel B, Teissie J (1995) Spatial compartmentation and time resolution of photooxidation of a cell membrane probe in electropermeabilized Chinese hamster ovary cells. Eur J Biochem 228:710–718

    Article  CAS  PubMed  Google Scholar 

  • Golzio M et al (1998) Control by osmotic pressure of voltage-induced permeabilization and gene transfer in mammalian cells. Biophys J 74:3015–3022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Golzio M et al (2002a) Cell synchronization effect on mammalian cell permeabilization and gene delivery by electric field. Biochim Biophys Acta 1563:23–28

    Article  CAS  PubMed  Google Scholar 

  • Golzio M et al (2002b) Direct visualization at the single-cell level of electrically mediated gene delivery. Proc Natl Acad Sci U S A 99:1292–1297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Golzio M et al (2004) In vitro and in vivo electric field-mediated permeabilization, gene transfer, and expression. Methods 33:126–135

    Article  CAS  PubMed  Google Scholar 

  • Hofmann F et al (1999) Electric field pulses can induce apoptosis. J Membr Biol 169:103–109

    Article  CAS  PubMed  Google Scholar 

  • Huynh C et al (2004) Defective lysosomal exocytosis and plasma membrane repair in Chediak-Higashi/beige cells. Proc Natl Acad Sci U S A 101:16795–16800

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kanduser M et al (2009) Mechanisms involved in gene electrotransfer using high- and low-voltage pulses—an in vitro study. Bioelectrochemistry 74:265–271

    Article  CAS  PubMed  Google Scholar 

  • Kotnik T et al (2012) Cell membrane electroporation—Part 1: the phenomenon. IEEE Electr Insul M 28(5):14–23

  • Li LH et al (1999) Apoptosis induced by DNA uptake limits transfection efficiency. Exp Cell Res 253:541–550

    Article  CAS  PubMed  Google Scholar 

  • Miklavčič D et al (2012) Electrochemotherapy: technological advancements for efficient electroporation-based treatment of internal tumors. Med Biol Eng Comput 50:1213–1225

    Article  PubMed Central  PubMed  Google Scholar 

  • Mir LM et al (1996) Bleomycin: revival of an old drug. Gen Pharmacol 27:745–748

    Article  CAS  PubMed  Google Scholar 

  • Napotnik TB et al (2010) Electropermeabilization of endocytotic vesicles in B16 F1 mouse melanoma cells. Med Biol Eng Comput 48:407–413

    Article  PubMed Central  PubMed  Google Scholar 

  • Neumann E, Rosenheck K (1972) Permeability changes induced by electric impulses in vesicular membranes. J Membr Biol 10:279–290

    Article  CAS  PubMed  Google Scholar 

  • Neumann E et al (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1:841–845

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pavlin M et al (2012) The role of electrically stimulated endocytosis in gene electrotransfer. Bioelectrochemistry 83:38–45

    Article  PubMed  Google Scholar 

  • Rols MP et al (1998) Control by ATP and ADP of voltage-induced mammalian-cell-membrane permeabilization, gene transfer and resulting expression. Eur J Biochem 254:382–388

    Article  CAS  PubMed  Google Scholar 

  • Rosazza C et al (2012) Cholesterol implications in plasmid DNA electrotransfer: evidence for the involvement of endocytotic pathways. Int J Pharm 423:134–143

    Article  CAS  PubMed  Google Scholar 

  • Satkauskas S et al (2012) Towards the mechanisms for efficient gene transfer into cells and tissues by means of cell electroporation. Expert Opin Biol Ther 12:275–286

    Article  CAS  PubMed  Google Scholar 

  • Schoenbach KH et al (2001) Intracellular effect of ultrashort electrical pulses. Bioelectromagnetics 22:440–448

    Article  CAS  PubMed  Google Scholar 

  • Sukhorukov VL et al (2005) Surviving high-intensity field pulses: strategies for improving robustness and performance of electrotransfection and electrofusion. J Membr Biol 206:187–201

    Article  CAS  PubMed  Google Scholar 

  • Utvik JK et al (1999) DNA injection into single cells of intact mice. Hum Gene Ther 10:291–300

    Article  CAS  PubMed  Google Scholar 

  • Weaver JC et al (2012) A brief overview of electroporation pulse strength-duration space: a region where additional intracellular effects are expected. Bioelectrochemistry 87:236–243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Young JL et al (2003) Effect of a DNA nuclear targeting sequence on gene transfer and expression of plasmids in the intact vasculature. Gene Ther 10:1465–1470

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks are due to S. Daniel for her help in the preliminary study. This work was performed with the “Toulouse Réseau Imagerie” core IPBS facility support (Génotoul, Toulouse, France) which was supported by the Association Recherche Cancer (n°5585), Region Midi Pyrenees (CPER) and Grand Toulouse cluster. The Midi-Pyrénées Region has financially supported this work (Grant 11052700). Research was conducted in the scope of the EBAM European Associated Laboratory (LEA) and resulted from the networking efforts of the COST Action TD1104.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Teissie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasquet, L., Bellard, E., Golzio, M. et al. A Double-Pulse Approach For Electrotransfection. J Membrane Biol 247, 1253–1258 (2014). https://doi.org/10.1007/s00232-014-9720-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-014-9720-6

Keywords

Navigation