Skip to main content
Log in

In Vivo Study of Transepithelial Potential Difference (TEPD) in Proximal Convoluted Tubules of Rat Kidney by Synchronization Modulation Electric Field

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Synchronization modulation (SM) electric field has been shown to effectively activate function of Na+/K+ pumps in various cells and tissues, including skeletal muscle cells, cardiomyocyte, monolayer of cultured cell line, and peripheral blood vessels. We are now reporting the in vivo studies in application of the SM electric field to kidney of living rats. The field-induced changes in the transepithelial potential difference (TEPD) or the lumen potential from the proximal convoluted tubules were monitored. The results showed that a short time (20 s) application of the SM electric field can significantly increase the magnitude of TEPD from 1–2 mV to about 20 mV. The TEPD is an active potential representing the transport current of the Na/K pumps in epithelial wall of renal tubules. This study showed that SM electric field can increase TEPD by activation of the pump molecules. Considering renal tubules, many active transporters are driven by the Na+ concentration gradient built by the Na+/K+ pumps, activation of the pump functions and increase in the magnitude of TEPD imply that the SM electric field may improve reabsorption functions of the renal tubules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alexander RT, Grinstein S (2006) Na+/H+ exchanges and the regulation of volume. Acta Physiol 187:159–167

    Article  CAS  Google Scholar 

  • Bartoli E, Romano G, Favret G (1996) Segmental reabsorption measured by micropuncture and clearance methods during hypertonic sodium infusion in the rat. Nephrol Dial Transplant 11:1996–2003

    Article  CAS  PubMed  Google Scholar 

  • Bomsztyk K (1986) Chloride transport by rat renal proximal tubule: effects of bicarbonate absorption. Am J Physiol 250:1046–1054

    Google Scholar 

  • Burnett JC, Haas JA, Knox FG (1982) Segmental analysis of sodium reabsorption during renal vein constriction. Am J Physiol 243:19–22

    Google Scholar 

  • Chen W (2008) Synchronization of ion exchangers by an oscillating electric field: theory. J Phys Chem B 112(32):10064–10070

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Dando R (2006) Electrical activation of Na/K pumps can increase ionic concentration gradient and membrane resting potential. J Membr Biol 214:147–155

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Dando R (2007) Synchronization modulation of Na/K pump molecules can hyperpolarize the membrane resting potential in intact fibers. J Bioenerg Biomembr 39:117–126

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Zhang ZS, Huang F (2007) Entrainment of Na/K pumps by a synchronization modulation electric field. J Bioenerg Biomembr 39(4):331–339

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Zhang ZS, Huang F (2008) Synchronization of the Na/K pumps by an oscillating electric field. J Bioenerg Biomembr 40:347–357

    Article  CAS  PubMed  Google Scholar 

  • Dando R, Fang ZH, Chen W (2012) Hyperpolarization of the membrane potential in cardiomyocyte tissue slices by the synchronization modulation electric field. J Membr Biol 245:97–105

    Article  CAS  PubMed  Google Scholar 

  • El Mernissi G, Doucet A (1983) Short-term effects of aldosterone and dexamethasone on Na–K-ATPase along the rabbit nephron. Pflugers Arch 399(2):147–151

    Article  PubMed  Google Scholar 

  • Feraille E, Doucet A (2001) Sodium-potassium-adenosinetriphosphatase-dependent sodium transport in the kidney: hormonal control. Physiol Rev 81(1):345–418

    CAS  PubMed  Google Scholar 

  • Harris RC, Seifter JL, Lechene C (1986) Coupling of Na–H exchange and Na–K pump activity in cultured rat proximal tubule cells. Am J Physiol (Cell Physiol) 251:815–824

    Google Scholar 

  • Jorgensen PL (1980) Sodium and potassium ion pump in kidney tubules. Physiol Rev 60(3):864–917

    CAS  PubMed  Google Scholar 

  • Katz AI, Lindheimer MD (1975) Relation of Na–K-ATPase to acute changes in renal tubular sodium and potassium transport. J Gen Physiol 66:209–222

    Article  CAS  PubMed  Google Scholar 

  • Koeppen BM, Giebisch G (1983) Electrophysiology of mammalian renal tubules: inferences from intracellular microelectrode studies. Annu Rev Physiol 45:497–517

    Article  CAS  PubMed  Google Scholar 

  • Planelles G, Moreau K, Anagnostopoulos T (1983) Reinvestigation of the transepithelial P. D. in the proximal tubule of necturus kidney. Pflüg Arch Eur J Physiol 396(1):41–48

    Article  CAS  Google Scholar 

  • Rakowski RF, Gadsby DC, De Weer P (1989) Stoichiometry and voltage dependence of the sodium pump in voltage-clamped, internally dialyzed squid giant axon. J Gen Physiol 93:903–941

    Article  CAS  PubMed  Google Scholar 

  • Romero MF, Fulton CM, Boron WF (2004) The SLC4 family of HCO3. Pflug Arch Eur J Physiol 447:495–509

    Article  CAS  Google Scholar 

  • Schild L, Giebisch G, Green R (1988) Chloride transport in the proximal renal tubule. Annu Rev Physiol 50:97–110

    Article  CAS  PubMed  Google Scholar 

  • Seely JF, Chirito E (1975) Studies of the electrical potential difference in rat proximal tubule. Am J Physiol 229(1):72–80

    CAS  PubMed  Google Scholar 

  • Terada Y, Knepper MA (1989) Na+–K+-ATPase activates in renal tubule segments of rat inner medulla, renal fluid electrolyte. Physiol 25:218–223

    Google Scholar 

  • Tran V, Zhang XD, Cao L, Li HQ, Lee B, So M, Sun YH, Chen W, Zhao M (2013) Synchronization modulation increases transepithelial potentials in MDCK monolayers through Na/K pumps. PLoS One 8(4):e61509. http://www.plosone.org. Accessed 1 Apr 2013

  • Zhang LP, Fang ZH, Chen W (2012) Quick and effective hyperpolarization of the membrane potential in intact smooth muscle cells of blood vessels by synchronization modulation electric field. J Bioenerg Biomembr 44(3):385–395

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was partially supported by the research grants 2NIGM 50785 from NIH, and PHY-0515787 from NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clausell, M., Fang, Z. & Chen, W. In Vivo Study of Transepithelial Potential Difference (TEPD) in Proximal Convoluted Tubules of Rat Kidney by Synchronization Modulation Electric Field. J Membrane Biol 247, 601–609 (2014). https://doi.org/10.1007/s00232-014-9676-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-014-9676-6

Keywords

Navigation