Skip to main content

Advertisement

Log in

Microdosimetric Study for Nanosecond Pulsed Electric Fields on a Cell Circuit Model with Nucleus

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Recently, scientific interest in electric pulses, always more intense and shorter and able to induce biological effects on both plasma and nuclear membranes, has greatly increased. Hence, microdosimetric models that include internal organelles like the nucleus have assumed increasing importance. In this work, a circuit model of the cell including the nucleus is proposed, which accounts for the dielectric dispersion of all cell compartments. The setup of the dielectric model of the nucleus is of fundamental importance in determining the transmembrane potential (TMP) induced on the nuclear membrane; here, this is demonstrated by comparing results for three different sets of nuclear dielectric properties present in the literature. The results have been compared, even including or disregarding the dielectric dispersion of the nucleus. The main differences have been found when using pulses shorter than 10 ns. This is due to the fact that the high spectral components of the shortest pulses are differently taken into account by the nuclear membrane transfer functions computed with and without nuclear dielectric dispersion. The shortest pulses are also the most effective in porating the intracellular structures, as confirmed by the time courses of the TMP calculated across the plasma and nuclear membranes. We show how dispersive nucleus models are unavoidable when dealing with pulses shorter than 10 ns because of the large spectral contents arriving above 100 MHz, i.e., over the typical relaxation frequencies of the dipolar mechanism of the molecules constituting the nuclear membrane and the subcellular cell compartments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Buescher ES, Schoenbach HK (2003) Effects of submicrosecond, high intensity pulsed electric fields on living cells—intracellular electromanipulation. IEEE Trans Dielectr Electr Insul 10(5):788–794

    Article  Google Scholar 

  • Chen N, Garner AL, Chen G, Jing Y, Deng Y, Swanson RJ, Kolb JF, Beebe SJ, Joshi RP, Schoenbach KH (2007) Nanosecond electric pulses penetrate the nucleus and enhance speckle formation. Biochem Biophys Res Commun 364:220–225

    Article  CAS  PubMed  Google Scholar 

  • Elia S, Lamberti P, Tucci V (2010) Influence of uncertain electrical properties on the conditions for the onset of electroporation in an eukaryotic cell. IEEE Trans Nanobioscience 9(3):204–212

    Article  PubMed  Google Scholar 

  • Ermolina I, Polevaya Y, Feldman Y (2000) Analysis of dielectric spectra of eukaryotic cells by computer modeling. Eur Biophys J 29:141–145

    Article  CAS  PubMed  Google Scholar 

  • Gowrishankar TR, Esser AT, Vasilkoski Z, Smith KC, Weaver JC (2006) Microdosimetry for conventional and supra-electroporation in cells with organelles. Biochem Biophys Res Commun 341:1266–1276

    Article  CAS  PubMed  Google Scholar 

  • Hu Q, Viswanadham S, Joshi RP, Schoenbach KH, Beebe SJ, Blackmore PF (2005) Simulations of transient membrane behaviour in cells subjected to a high-intensity ultrashort electric pulse. Phys Rev 75:031914-1-9

    Google Scholar 

  • Joshi RP, Hu Q (2011) Case for applying subnanosecond high-intensity, electrical pulses to biological cells. IEEE Trans Biomed Eng 58(10):2860–2866

    Article  PubMed  Google Scholar 

  • Joshi RP, Schoenbach KH (2010) Bioelectric effects of intense ultrashort pulses. Crit Rev Biomed Eng 38(3):255–304

    Article  CAS  PubMed  Google Scholar 

  • Joshi RP, Hu Q, Schoenbach KH, Beebe SJ (2004) Energy-landscape model analysis for irreversibility and its pulse-width dependence in cells subjected to a high-intensity ultrashort electric pulse. Phys Rev E 69:051901-1–051901-10

    Article  Google Scholar 

  • Kotnik T, Miklavcic D (2006) Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric field. Biophys J 90:480–491

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kotnik T, Pucihar G, Miklavcic D (2010) Induced transmembrane voltage and its correlation with electroporation-mediated molecular transport. J Membr Biol 236:3–13

    Article  CAS  PubMed  Google Scholar 

  • Marracino P, Apollonio F, Liberti M, d’Inzeo G, Amadei A (2013) Effect of high exogenous electric pulses on protein conformation: myoglobin as a case study. J Phys Chem 117(8):2273–2279

    Article  CAS  Google Scholar 

  • Merla C, Liberti M, Apollonio F, d’Inzeo G (2009) Quantitative assessment of dielectric parameters for membrane lipid bi-layers from RF permittivity measurements. Bioelectromagnetics 30:286–298

    Article  CAS  PubMed  Google Scholar 

  • Merla C, Paffi A, Apollonio F, Leveque P, d’Inzeo G, Liberti M (2011) Microdosimetry for nanosecond pulsed electric field applications: a parametric study for a single cell. IEEE Trans Biomed Eng 58(5):1294–1302

    Article  PubMed  Google Scholar 

  • Merla C, Denzi A, Paffi A, Casciola M, d’Inzeo G, Apollonio F, Liberti M (2012) Novel passive element circuits for microdosimetry of nanosecond pulsed electric fields. IEEE Trans Biomed Eng 49(8):2302–2311

    Article  Google Scholar 

  • Piuzzi E, Merla C, Cannazza G, Zambotti A, Apollonio F, Cataldo A, D'Atanasio P, De Benedetto E, Liberti M (2013) A comparative analysis between customized and commercial systems for complex permittivity measurements on liquid samples at microwave frequencies. IEEE Trans Instrum Meas 62(5):1034–1046

    Article  CAS  Google Scholar 

  • Polk C, Postov E (1995) Biological effects of electromagnetic fields. CRC handbook, 2nd edn. CRC, Boca Raton

    Google Scholar 

  • Pucihar G, Miklavcic D, Kotnik T (2009) A time-dependent numerical model of transmembrane voltage inducement and electroporation of irregularly shaped cells. IEEE Trans Biomed Eng 56(5):1491–1501

    Article  PubMed  Google Scholar 

  • Schoenbach KH, Hargrava B, Joshi RP, Kolb JF, Nuccitelli R, Osgood C, Pakhomov A, Stacey M, Swanson RJ, White JA, Xiao S, Zhang J (2007) Bioelectric effects of intense nanosecond pulses. IEEE Trans Dielectr Electr Insul 14(5):1088–1109

    Article  CAS  Google Scholar 

  • Smith KC, Weaver JC (2008) Active mechanisms are needed to describe cell responses to submicrosecond, megavolt-per-meter pulses: cell models for ultrashort pulses. Biophys J 95(4):1547–1563

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith KC, Gowrishankar TR, Esser AT, Stewart DA, Weaver JC (2006) The spatially distributed dynamic transmembrane voltage of cells and organelles due to 10-ns pulses: meshed transport networks. IEEE Trans Plasma Sci 34(4):1394–1404

    Article  Google Scholar 

  • Stewart DA, Gowrishankar TR, Weaver JC (2004) Transport lattice approach to describing cell electroporation: use of a local asymptotic model. IEEE Trans Plasma Sci 32:1696–1708

    Article  Google Scholar 

  • Vernier PT, Ziegler MJ, Sun Y, Chang WV, Gundersen MA, Tieleman DP (2006) Nano pore formation and phosphatidylserine externalization in a phospholipids bilayer at high transmembrane potential. J Am Chem Soc 128(19):6288–6289

    Article  CAS  PubMed  Google Scholar 

  • Vernier PT, Sun Y, Chen M-T, Gundersen MA, Craviso GL (2008) Nanosecond electric pulse–induced calcium entry into chromaffin cells. Bioelectrochemistry 73:1–4

    Article  CAS  PubMed  Google Scholar 

  • Wachner D, Simeonova M, Gimsa J (2002) Estimating the subcellular absorption of electric field energy: equations for an ellipsoidal single shell model. Bioelectrochemistry 56:211–213

    Article  CAS  PubMed  Google Scholar 

  • Yao C, Mi Y, Li C, Hu X, Chen X, Sun C (2008) Study of transmembrane potentials on cellular inner and outer membrane—frequency response model and its filter characteristic simulation. IEEE Trans Biomed Eng 55:1792–1799

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This activity is in the framework of the COST Action TD1104—European network for development of electroporation-based technologies and treatments (EP4Bio2Med).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Micaela Liberti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denzi, A., Merla, C., Camilleri, P. et al. Microdosimetric Study for Nanosecond Pulsed Electric Fields on a Cell Circuit Model with Nucleus. J Membrane Biol 246, 761–767 (2013). https://doi.org/10.1007/s00232-013-9546-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-013-9546-7

Keywords

Navigation