Skip to main content
Log in

A Molecular Dynamics Simulation Study of Nanomechanical Properties of Asymmetric Lipid Bilayer

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

A very important part of the living cells of biological systems is the lipid membrane. The mechanical properties of this membrane play an important role in biophysical studies. Investigation as to how the insertion of additional phospholipids in one leaflet of a bilayer affects the physical properties of the obtained asymmetric lipid membrane is of recent practical interest. In this work a coarse-grained molecular dynamics simulation was carried out in order to compute the pressure tensor, the lateral pressure, the surface tension and the first moment of lateral pressure in each leaflet of such a bilayer. Our simulations indicate that adding more phospholipids into one monolayer results in asymmetrical changes in the lateral pressure of the individual bilayer leaflets. Interestingly, it has been observed that a change in phospholipid density in one leaflet affects the physical properties of unperturbed leaflet as well. The asymmetric behavior of the physical properties of the two leaflets as a result of a change in the contribution of the various intermolecular forces in the presence of additional phospholipids may be expressed formally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anglin TC, Conboy JC (2008) Lateral pressure dependence of the phospholipid transmembrane diffusion rate in planar-supported lipid bilayers. Biophys J 95:186–193

    Article  PubMed  CAS  Google Scholar 

  • Baoukina S, Marrink SJ, Tieleman DP (2010) Lateral pressure profiles in lipid monolayers. Faraday Discuss 144:393–409

    Article  PubMed  CAS  Google Scholar 

  • Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. J Comput Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  • Bretscher MS (1972) Asymmetrical lipid bilayer structure for biological membranes. Nat N Biol 236:11–12

    Article  CAS  Google Scholar 

  • Canham PB (1970) The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J Theor Biol 26:61–68

    Article  PubMed  CAS  Google Scholar 

  • Cantor RS (1997) Lateral pressures in cell membranes: a mechanism for modulation of protein function. J Phys Chem B 101:1723–1725

    Article  CAS  Google Scholar 

  • Cantor RS (1998) The lateral pressure profile in membranes: a physical mechanism of general anesthesia. Toxicol Lett 101:451–458

    Article  Google Scholar 

  • Cantor RS (1999a) Lipid composition and the lateral pressure profile in bilayers. Biophys J 76:2625–2639

    Article  PubMed  CAS  Google Scholar 

  • Cantor RS (1999b) The influence of membrane lateral pressures on simple geometric models of protein conformational equilibria. Chem Phys Lipids 101:45–56

    Article  PubMed  CAS  Google Scholar 

  • Carrillo-Tripp M, Feller SE (2005) Evidence for a mechanism by which ω-3 polyunsaturated lipids may affect membrane protein function. J Biochem 44:10164–10169

    Article  CAS  Google Scholar 

  • de Kruijff B (1997) Lipids beyond the bilayer. Nature 386:129–130

    Article  PubMed  Google Scholar 

  • Frank FC (1958) Liquid crystals. On the theory of liquid crystals. Discuss Faraday Soc 25:19–28

    Article  Google Scholar 

  • Frischknecht AL, Frink LJD (2006) Alcohols reduce lateral membrane pressures: predictions from molecular theory. Biophys J 91:4081–4090

    Article  PubMed  CAS  Google Scholar 

  • Goetz R, Lipowsky R (1998) Computer simulation of bilayer membranes: self assembly and interfacial tension. J Chem Phys 108:7397–7409

    Article  CAS  Google Scholar 

  • Griepernau B, Bockmann RA (2008) The influence of 1-alkanols and external pressure on the lateral pressure profiles of lipid bilayers. Biophys J 95:5766–5778

    Article  PubMed  CAS  Google Scholar 

  • Gruner SM, Shyamsunder E (1991) Is the mechanism of general anesthesia related to lipid membrane spontaneous curvature? Mol Cell Mech Alcohol Anesth 625:685–697

    CAS  Google Scholar 

  • Gullingsrud J, Schulten K (2004) Lipid bilayer pressure profiles and mechanosensitive channel gating. Biophys J 86:3496–3509

    Article  PubMed  CAS  Google Scholar 

  • Gurtovenko AA (2005) Asymmetry of lipid bilayers induced by monovalent salt: atomistic molecular dynamics study. J Chem Phys 122:244902

    Article  PubMed  Google Scholar 

  • Harasima A (1958) Molecular theory of surface tension. Adv Chem Phys 1:203–212

    Article  Google Scholar 

  • Harries D, Benshaul A (1997) Conformational chain statistics in a model lipid bilayer: comparison between mean field and Monte Carlo calculations. J Chem Phys 106:1609–1619

    Article  CAS  Google Scholar 

  • Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch C 28:693–703

    PubMed  CAS  Google Scholar 

  • Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  CAS  Google Scholar 

  • Irving JH, Kirkwood JG (1950) The statistical mechanical theory of transport processes IV. The equations of hydrodynamics. J Chem Phys 18:817–824

    Article  CAS  Google Scholar 

  • Israelachvili JN (1985) Intermolecular and surface forces. Academic, New York

    Google Scholar 

  • Israelachvili JN, Marcelja S, Horn RG (1980) Physical principles of membrane organization. Q Rev Biophys 13:121–200

    Article  PubMed  CAS  Google Scholar 

  • Kukol A (2009) Lipid models for united-atom molecular dynamics simulations of proteins. J Chem Theory Comput 5:615–626

    Article  CAS  Google Scholar 

  • Liang X, Mao G, Simon KY (2004) Mechanical properties and stability measurement of cholesterol-containing liposome on mica by atomic force microscopy. J Colloid Interface Sci 278:53–62

    Article  PubMed  CAS  Google Scholar 

  • Lindahl E, Edholm O (2000) Spatial and energetic-entropic decomposition of surface tension in lipid bilayers from molecular dynamics simulations. J Chem Phys 113:3882–3892

    Article  CAS  Google Scholar 

  • Lipowsky R, Grotehans S (1994) Renormalization of hydration forces by collective protrusion modes. Biophys Chem 49:27–42

    Article  CAS  Google Scholar 

  • Marrink SJ, de Vries AH, Mark AE (2004) Coarse grained model for semiquantitative lipid simulations. J Phys Chem B 108:750

    Article  CAS  Google Scholar 

  • Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824

    Article  PubMed  CAS  Google Scholar 

  • Marsh D (1996) Lateral pressure in membranes. Biochem Biophys Acta 1286:183–223

    Article  PubMed  CAS  Google Scholar 

  • Marsh D (2006) Elastic curvature constants of lipid monolayers and bilayers. Chem Phys Lipids 144:146–159

    Article  PubMed  CAS  Google Scholar 

  • Melzak KA, Bender F, Tsortos A, Gizeli E (2008) Probing mechanical properties of liposomes using acoustic sensors. Langmuir 24:9172–9180

    Article  PubMed  CAS  Google Scholar 

  • Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink SJ (2008) The MARTINI coarse-grained force field: extension to proteins. J Chem Theory Comput 4:819–834

    Article  CAS  Google Scholar 

  • Mukhin SI, Baoukina S (2005) Analytical derivation of thermodynamic characteristics of lipid bilayer from a flexible string model. Phys Rev E Stat Nonlinear Soft Matter Phys 71:061918

    Article  Google Scholar 

  • Ollila S, Hyvönen MT, Vattulainen I (2007a) Polyunsaturation in lipid membranes—dynamic properties and lateral pressure profiles. J Phys Chem B 111:3139–3150

    Article  PubMed  CAS  Google Scholar 

  • Ollila S, Rog T, Karttunen M, Vattulainen I (2007b) Role of sterol type on lateral pressure profiles of lipid membranes affecting membrane protein functionality: comparison between cholesterol, desmosterol, 7-dehydrocholesterol and ketosterol. J Struct Biol 159:311–323

    Article  Google Scholar 

  • Ollila OHS, Risselada HJ, Louhivuori H, Lindahl E, Vattulainen I, Marrink SJ (2009) 3D pressure field in lipid membranes and membrane–protein complexes. Phys Rev Lett 102:078101

    Article  PubMed  Google Scholar 

  • Patra M (2005) Lateral pressure profiles in cholesterol-DPPC bilayers. Eur Biophys J Biophys Lett 35:79–88

    Article  CAS  Google Scholar 

  • Perozo E, Rees DC (2003) Structure and mechanism in prokaryotic mechanosensitive channels. Curr Opin Struct Biol 13:432–442

    Article  PubMed  CAS  Google Scholar 

  • Rowlinson JS, Widom B (1982) Molecular theory of capillarity. Clarendon Press, Oxford

    Google Scholar 

  • Safran SA (1994) Statistical thermodynamics of surfaces, interfaces, and membranes. Addison–Wesley, Reading

    Google Scholar 

  • Schofield P, Henderson JR (1982) Statistical mechanics of inhomogeneous fluids. Proc R Soc Lond A Math Phys Sci 379:231–238

    Article  Google Scholar 

  • Seddon JM, Templer RH (1995) Structure and dynamics of membranes. Elsevier, Amsterdam, pp 97–160

    Google Scholar 

  • Shillcock JC, Lipowsky R (2002) Equilibrium structure and lateral stress distribution of amphiphilic bilayers from dissipative particle dynamics simulations. J Chem Phys 117:5048–5061

    Article  CAS  Google Scholar 

  • Sonne J, Hansen FY, Peters GH (2005) Methodological problems in pressure profile calculations for lipid bilayers. J Chem Phys 122:124903

    Article  PubMed  Google Scholar 

  • Szleifer I, Kramer D, Benshaul A, Gelbart WM, Safran SA (1990) Molecular theory of curvature elasticity in surfactant films. J Chem Phys 92:6800–6817

    Article  CAS  Google Scholar 

  • Terama E, Ollila S, Salonen E, Rowat AC, Trandum C, Westh P, Patra M, Karttunen M, Vattulainen I (2008) Distribution and dynamics of adamantanes in a lipid bilayer. J Phys Chem B 112:4131–4413

    Article  PubMed  CAS  Google Scholar 

  • Venturoli M, Smit B (1999) Simulating the self-assembly of model membranes. Phys Chem Commun 10:45–49

    Google Scholar 

  • Xiang TX, Anderson BD (1994) Molecular distributions in interphases: statistical mechanical theory combined with molecular dynamics simulation of a model lipid bilayer. Biophys J 66:561–572

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehriar Amininasab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maftouni, N., Amininasab, M., Vali, M. et al. A Molecular Dynamics Simulation Study of Nanomechanical Properties of Asymmetric Lipid Bilayer. J Membrane Biol 246, 67–73 (2013). https://doi.org/10.1007/s00232-012-9505-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-012-9505-8

Keywords

Navigation