Skip to main content
Log in

Prediction of Lipid-Binding Regions in Cytoplasmic and Extracellular Loops of Membrane Proteins as Exemplified by Protein Translocation Membrane Proteins

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The presence of possible lipid-binding regions in the cytoplasmic or extracellular loops of membrane proteins with an emphasis on protein translocation membrane proteins was investigated in this study using bioinformatics. Recent developments in approaches recognizing lipid-binding regions in proteins were found to be promising. In this study a total bioinformatics approach specialized in identifying lipid-binding helical regions in proteins was explored. Two features of the protein translocation membrane proteins, the position of the transmembrane regions and the identification of additional lipid-binding regions, were analyzed. A number of well-studied protein translocation membrane protein structures were checked in order to demonstrate the predictive value of the bioinformatics approach. Furthermore, the results demonstrated that lipid-binding regions in the cytoplasmic and extracellular loops in protein translocation membrane proteins can be predicted, and it is proposed that the interaction of these regions with phospholipids is important for proper functioning during protein translocation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Antonny B (2011) Mechanisms of membrane curvature sensing. Annu Rev Biochem 80:101–123

    Article  PubMed  CAS  Google Scholar 

  • Beck K, Eisner G, Trescher D, Dalbey RE, Brunner J, Müller M (2001) YidC, an assembly site for polytopic Escherichia coli membrane proteins located in immediate proximity to the SecYE translocon and lipids. EMBO Rep 2:709–714

    Article  PubMed  CAS  Google Scholar 

  • Bernsel A, Viklund H, Hennerdal A, Elofsson A (2009) TOPCONS: consensus prediction of membrane protein topology. Nucleic Acids Res 37:W465–W468

    Article  PubMed  CAS  Google Scholar 

  • Bogdanov M, Dowhan W (1999) Lipid-assisted protein folding. J Biol Chem 274:36827–36830

    Article  PubMed  CAS  Google Scholar 

  • Bondar AN, del Val C, Freites JA, Tobias DJ, White SH (2010) Dynamics of SecY translocons with translocation-defective mutations. Structure 18:847–857

    Article  PubMed  CAS  Google Scholar 

  • Bost S, Belin D (1997) prl mutations in the Escherichia coli secG gene. J Biol Chem 272:4087–4093

    Article  PubMed  CAS  Google Scholar 

  • Breukink E, Keller RCA, de Kruijff B (1993) Nucleotide and negatively charged lipid-dependent vesicle aggregation caused by SecA. Evidence that SecA contains two lipid-binding sites. FEBS Lett 331:19–24

    Article  PubMed  CAS  Google Scholar 

  • Brown DA, London E (1998) Structure and origin of ordered lipid domains in biological membranes. J Membr Biol 164:103–114

    Article  PubMed  CAS  Google Scholar 

  • Brzeska H, Guag J, Remmert K, Chacko S, Korn ED (2010) An experimentally based computer search identifies unstructured membrane-binding sites in proteins: application to class I myosins, PAKS, and CARMIL. J Biol Chem 285:5738–5747

    Article  PubMed  CAS  Google Scholar 

  • Chayen NE, Saridakis E (2008) Protein crystallization: from purified protein to diffraction-quality crystal. Nat Methods 5:147–153

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Tai PC, Sui SF (2007) The active ring-like structure of SecA revealed by electron crystallography: conformational change upon interaction with SecB. J Struct Biol 159:149–153

    Article  PubMed  CAS  Google Scholar 

  • Combet C, Blanchet C, Geourjon C, Deléage G (2000) NPS@: network protein sequence analysis. Trends Biochem Sci 25:147–150

    Article  PubMed  CAS  Google Scholar 

  • de Leeuw E, Porcelli I, Sargent F, Palmer T, Berks BC (2001) Membrane interactions and self-association of the TatA and TatB components of the twin-arginine translocation pathway. FEBS Lett 506:143–148

    Article  PubMed  Google Scholar 

  • de Planque MRR, Killian JA (2003) Protein–lipid interactions studied with designed transmembrane peptides: role of hydrophobic matching and interfacial anchoring. Mol Membr Biol 20:271–284

    Article  PubMed  Google Scholar 

  • Deber CM, Li SC (1995) Peptides in membranes: helicity and hydrophobicity. Biopolymers 37:295–318

    Article  PubMed  CAS  Google Scholar 

  • Dowhan W (1997) Molecular basis for membrane phospholipid diversity: why are there so many lipids? Annu Rev Biochem 66:199–232

    Article  PubMed  CAS  Google Scholar 

  • Eichler J (2003) Evolution of the prokaryotic protein translocation complex: a comparison of archaeal and bacterial versions of SecDF. Mol Phylogenet Evol 27:504–509

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg D, Schwarz E, Komaromy M, Wall R (1984) Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol 179:125–142

    Article  PubMed  CAS  Google Scholar 

  • Flower AM (2001) SecG function and phospholipid metabolism in Escherichia coli. J Bacteriol 183:2006–2012

    Article  PubMed  CAS  Google Scholar 

  • García-Sáez AJ, Schwille P (2008) Fluorescence correlation spectroscopy for the study of membrane dynamics and protein/lipid interactions. Methods 46:116–122

    Article  PubMed  Google Scholar 

  • Gautier R, Douguet D, Anthonny B, Drin G (2008) Heliquest: a Web-server to screen sequences with specific α-helical properties. Bioinformatics 24:2101–2102

    Article  PubMed  CAS  Google Scholar 

  • Greene NP, Porcelli I, Buchanan G, Hicks MG, Schermann SM, Palmer T, Berks BC (2007) Cysteine scanning mutagenesis and disulfide mapping studies of the TatA component of the bacterial twin arginine translocase. J Biol Chem 282:23937–23945

    Article  PubMed  CAS  Google Scholar 

  • Haney EF, Nathoo S, Vogel HJ, Prenner EJ (2010) Induction of non-lamellar lipid phases by antimicrobial peptides: a potential link to mode of action. Chem Phys Lipids 163:82–93

    Article  PubMed  CAS  Google Scholar 

  • Hsieh YH, Zhang H, Lin BR, Cui N, Na B, Yang H, Jiang C, Sui SF, Tai PC (2011) SecA alone can promote protein translocation and ion channel activity: SecYEG increases efficiency and signal peptide specificity. J Biol Chem 286:44702–44709

    Article  PubMed  CAS  Google Scholar 

  • Keller RCA (2011a) The prediction of novel multiple lipid-binding regions in protein translocation motor proteins: a possible general feature. Cell Mol Biol Lett 16:40–54

    Article  PubMed  CAS  Google Scholar 

  • Keller RCA (2011b) New user-friendly approach to obtain an Eisenberg plot and its use as a practical tool in protein sequence analysis. Int J Mol Sci 12:5577–5591

    Article  PubMed  CAS  Google Scholar 

  • Keller RCA, Killian JA, de Kruijff B (1992) Anionic phospholipids are essential for α-helix formation of the signal peptide of prePhoE upon interaction with phospholipid vesicles. Biochemistry 31:1672–1677

    Article  PubMed  CAS  Google Scholar 

  • Keller RCA, Silvius JR, De Kruijff B (1995) Characterization of the resonance energy transfer couple coumarin-BODIPY and its possible applications in protein–lipid research. Biochem Biophys Res Commun 207:508–514

    Article  PubMed  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) ClustalW and ClustalX version 2. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Lee PA, Orriss GL, Buchanan G, Greene NP, Bond PJ, Punginelli C, Jack RL, Sansom MSP, Berks BC, Palmer T (2006) Cysteine-scanning mutagenesis and disulfide mapping studies of the conserved domain of the twin-arginine translocase TatB component. J Biol Chem 281:34072–34085

    Article  PubMed  CAS  Google Scholar 

  • Lensink MF, Govaerts C, Ruysschaert JM (2010) Identification of specific lipid-binding sites in integral membrane proteins. J Biol Chem 285:10519–10526

    Article  PubMed  CAS  Google Scholar 

  • Liu TY, Bian X, Sun S, Hu X, Klemm RW, Prinz WA, Rapoport TA, Hu J (2012) Lipid interaction of the C terminus and association of the transmembrane segments facilitate atlastin-mediated homotypic endoplasmic reticulum fusion. Proc Natl Acad Sci USA 109:E2146–E2154

    Article  PubMed  CAS  Google Scholar 

  • Marsh D (2010) Electron spin resonance in membrane research: protein–lipid interactions from challenging beginnings to state of the art. Eur Biophys J 39:513–525

    Article  PubMed  CAS  Google Scholar 

  • Marsh D, Páli T (2004) The protein–lipid interface: perspectives from magnetic resonance and crystal structures. Biochim Biophys Acta 1666:118–141

    Article  PubMed  CAS  Google Scholar 

  • Mori T, Ishitani R, Tsukazaki T, Nureki O, Sugita Y (2010) Molecular mechanisms underlying the early stage of protein translocation through the Sec translocon. Biochemistry 49:945–950

    Article  PubMed  CAS  Google Scholar 

  • Morita K, Tokuda H, Nishiyam KI (2012) Multiple SecA molecules drive protein translocation across a single translocon with SecG inversion. J Biol Chem 287:455–464

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama K, Suzuki T, Tokuda H (1996) Inversion of the membrane topology of SecG coupled with SecA-dependent preprotein translocation. Cell 85:71–81

    Article  PubMed  CAS  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  PubMed  CAS  Google Scholar 

  • Phillips R, Ursell T, Wiggins P, Sens P (2009) Emerging roles for lipids in shaping membrane–protein function. Nature 459:379–385

    Article  PubMed  CAS  Google Scholar 

  • Ryba NJ, Dempsey CE, Watts A (1986) Protein–lipid interactions at membrane surfaces: a deuterium and phosphorus nuclear magnetic resonance study of the interaction between bovine rhodopsin and the bilayer head groups of dimyristoylphosphatidylcholine. Biochemistry 25:4818–4825

    Article  PubMed  CAS  Google Scholar 

  • Sagara K, Matsuyama S, Mizushima S (1994) SecF stabilizes SecD and SecY, components of the protein translocation machinery of the Escherichia coli cytoplasmic membrane. J Bacteriol 176:4111–4116

    PubMed  CAS  Google Scholar 

  • Serek J, Bauer-Manz G, Struhalla G, van den Berg L, Kiefer D, Dalbey R, Kuhn A (2004) Escherichia coli YidC is a membrane insertase for Sec-independent proteins. EMBO J 23:294–301

    Article  PubMed  CAS  Google Scholar 

  • Shanmugham A, Wong Fong Sang HW, Bollen YJ, Lill H (2006) Membrane binding of twin arginine preproteins as an early step in translocation. Biochemistry 45:2243–2249

    Article  PubMed  CAS  Google Scholar 

  • Stahelin RV (2009) Lipid-binding domains: more than simple lipid effectors. J Lipid Res 50:S299–S304

    Article  PubMed  Google Scholar 

  • Stiegler N, Dalbey RE, Kuhn A (2011) M13 procoat protein insertion into YidC and SecYEG proteoliposomes and liposomes. J Mol Biol 406:362–370

    Article  PubMed  CAS  Google Scholar 

  • Sudhahar CG, Haney RM, Xue Y, Stahelin RV (2008) Cellular membranes and lipid-binding domains as attractive targets for drug development. Curr Drug Targets 9:603–613

    Article  PubMed  CAS  Google Scholar 

  • Teasdale RD, Collins BM (2012) Insights into the PX (phox-homology) domain and SNX (sorting nexin) protein families: structures, functions and roles in disease. Biochem J 441:39–59

    Article  PubMed  CAS  Google Scholar 

  • Tsukazaki T, Mori H, Echizen Y, Ishitani R, Fukai S, Tanaka T, Perederina A, Vassylyev DG, Kohno T, Maturana AD, Ito K, Nureki O (2011) Structure and function of a membrane component SecDF that enhances protein export. Nature 474:235–238

    Article  PubMed  CAS  Google Scholar 

  • Tusnády GE, Kalmár L, Simon I (2008) TOPDB: topology data bank of transmembrane proteins. Nucleic Acids Res 36:D234–D239

    Article  PubMed  Google Scholar 

  • van Klompenburg W, de Kruijff B (1998) The role of anionic phospholipids in protein insertion and translocation in bacterial membranes. J Membr Biol 162:1–7

    Article  PubMed  Google Scholar 

  • van Klompenburg W, Nilsson I, von Heijne G, de Kruijff B (1997) Anionic phospholipids are determinants of membrane protein topology. EMBO J 16:4261–4266

    Article  PubMed  Google Scholar 

  • Vitrac H, Bogdanov M, Heacock P, Dowhan W (2011) Lipids and topological rules of membrane protein assembly: balance between long and short range lipid–protein interactions. J Biol Chem 286:15182–15194

    Article  PubMed  CAS  Google Scholar 

  • von Heijne G (1992) Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J Mol Biol 225:487–494

    Article  Google Scholar 

  • von Heijne G (1994) Membrane proteins: from sequence to structure. Annu Rev Biophys Biomol Struct 23:167–192

    Article  Google Scholar 

  • von Heijne G, Gavel Y (1988) Topogenic signals in integral membrane proteins. Eur J Biochem 174:671–678

    Article  Google Scholar 

  • Wang HW, Chen Y, Yang H, Chen X, Duan MX, Tai PC, Sui SF (2003) Ring-like pore structures of SecA: implication for bacterial protein-conducting channels. Proc Natl Acad Sci USA 100:4221–4226

    Article  PubMed  CAS  Google Scholar 

  • Wenk MR (2005) The emerging field of lipidomics. Nat Rev Drug Discov 4:594–610

    Article  PubMed  CAS  Google Scholar 

  • Yang YB, Lian J, Tai PC (1997) Differential translocation of protein precursors across SecY-deficient membranes of Escherichia coli: SecY is not obligatorily required for translocation of certain secretory proteins in vitro. J Bacteriol 179:7386–7393

    PubMed  CAS  Google Scholar 

  • Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob C. A. Keller.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 509 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keller, R.C.A. Prediction of Lipid-Binding Regions in Cytoplasmic and Extracellular Loops of Membrane Proteins as Exemplified by Protein Translocation Membrane Proteins. J Membrane Biol 246, 21–29 (2013). https://doi.org/10.1007/s00232-012-9498-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-012-9498-3

Keywords

Navigation