Skip to main content
Log in

Ancient Origin of Four-Domain Voltage-gated Na+ Channels Predates the Divergence of Animals and Fungi

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The four-domain voltage-gated Na+ channels are believed to have arisen in multicellular animals, possibly during the evolution of the nervous system. Recent genomic studies reveal that many ion channels, including Na+ channels and Ca2+ channels previously thought to be restricted to animals, can be traced back to one of the unicellular ancestors of animals, Monosiga brevicollis. The eukaryotic supergroup Opisthokonta contains animals, fungi, and a diverse group of their unicellular relatives including M. brevicollis. Here, we demonstrate the presence of a putative voltage-gated Na+ channel homolog (TtrNaV) in the apusozoan protist Thecamonas trahens, which belongs to the unicellular sister group to Opisthokonta. TtrNaV displays a unique selectivity motif distinct from most animal voltage-gated Na+ channels. The identification of TtrNaV suggests that voltage-gated Na+ channels might have evolved before the divergence of animals and fungi. Furthermore, our analyses reveal that NaV channels have been lost independently in the amoeboid holozoan Capsaspora owczarzaki of the animal lineage and in several basal fungi. These findings provide novel insights into the evolution of four-domain voltage-gated ion channels, ion selectivity, and membrane excitability in the Opisthokonta lineage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Anderson PA, Holman MA, Greenberg RM (1993) Deduced amino acid sequence of a putative sodium channel from the scyphozoan jellyfish Cyanea capillata. Proc Natl Acad Sci USA 90:7419–7423

    Article  PubMed  CAS  Google Scholar 

  • Armstrong CM, Hille B (1998) Voltage-gated ion channels and electrical excitability. Neuron 20:371–380

    Article  PubMed  CAS  Google Scholar 

  • Arnegard ME, Zwickl DJ, Lu Y, Zakon HH (2010) Old gene duplication facilitates origin and diversification of an innovative communication system—twice. Proc Natl Acad Sci USA 107:22172–22177

    Article  PubMed  CAS  Google Scholar 

  • Brailoiu E, Churamani D, Cai X, Schrlau MG, Brailoiu GC, Gao X, Hooper R, Boulware MJ, Dun NJ, Marchant JS, Patel S (2009) Essential requirement for two-pore channel 1 in NAADP-mediated calcium signaling. J Cell Biol 186:201–209

    Article  PubMed  CAS  Google Scholar 

  • Cai X (2008a) Subunit stoichiometry and channel pore structure of ion channels: all for one, or one for one? J Physiol 586:925–926

    Article  PubMed  CAS  Google Scholar 

  • Cai X (2008b) Unicellular Ca2+ signaling “toolkit” at the origin of Metazoa. Mol Biol Evol 25:1357–1361

    Article  PubMed  CAS  Google Scholar 

  • Cai X (2011) P2X receptor homologs in basal fungi. Purinergic Signal. doi:10.1007/s11302-011-9261-8

  • Cai X, Clapham DE (2012) Ancestral Ca2+ signaling machinery in early animal and fungal evolution. Mol Biol Evol 29:91–100

    Google Scholar 

  • Cai X, Patel S (2010) Degeneration of an intracellular ion channel in the primate lineage by relaxation of selective constraints. Mol Biol Evol 27:2352–2359

    Article  PubMed  CAS  Google Scholar 

  • Calcraft PJ, Ruas M, Pan Z, Cheng X, Arredouani A, Hao X, Tang J, Rietdorf K, Teboul L, Chuang KT, Lin P, Xiao R, Wang C, Zhu Y, Lin Y, Wyatt CN, Parrington J, Ma J, Evans AM, Galione A, Zhu MX (2009) NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature 459:596–600

    Article  PubMed  CAS  Google Scholar 

  • Carr M, Leadbeater BS, Hassan R, Nelson M, Baldauf SL (2008) Molecular phylogeny of choanoflagellates, the sister group to Metazoa. Proc Natl Acad Sci USA 105:16641–16646

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA, Goldin AL, Waxman SG (2005a) International union of pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev 57:397–409

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J (2005b) International union of pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 57:411–425

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T, Chao EE (2003) Phylogeny of choanozoa, apusozoa, and other protozoa and early eukaryote megaevolution. J Mol Evol 56:540–563

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T, Chao EE (2010) Phylogeny and evolution of apusomonadida (protozoa: apusozoa): new genera and species. Protist 161:549–576

    Article  PubMed  Google Scholar 

  • Clapham DE (2007) Calcium signaling. Cell 131:1047–1058

    Article  PubMed  CAS  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2011) ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27:1164–1165

    Article  PubMed  CAS  Google Scholar 

  • Durell SR, Guy HR (2001) A putative prokaryote voltage-gated Ca(2+) channel with only one 6TM motif per subunit. Biochem Biophys Res Commun 281:741–746

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Felsenstein J (1996) Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. Meth Enzymol 266:418–427

    Google Scholar 

  • Fountain SJ, Burnstock G (2009) An evolutionary history of P2X receptors. Purinergic Signal 5:269–272

    Article  PubMed  CAS  Google Scholar 

  • Fountain SJ, Parkinson K, Young MT, Cao L, Thompson CR, North RA (2007) An intracellular P2X receptor required for osmoregulation in Dictyostelium discoideum. Nature 448:200–203

    Article  PubMed  CAS  Google Scholar 

  • Fountain SJ, Cao L, Young MT, North RA (2008) Permeation properties of a P2X receptor in the green algae Ostreococcus tauri. J Biol Chem 283:15122–15126

    Article  PubMed  CAS  Google Scholar 

  • Galione A, Evans AM, Ma J, Parrington J, Arredouani A, Cheng X, Zhu MX (2009) The acid test: the discovery of two-pore channels (TPCs) as NAADP-gated endolysosomal Ca(2+) release channels. Pflugers Arch 458:869–876

    Article  PubMed  CAS  Google Scholar 

  • Goldin AL (2002) Evolution of voltage-gated Na(+) channels. J Exp Biol 205:575–584

    PubMed  CAS  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  PubMed  CAS  Google Scholar 

  • Heinemann SH, Terlau H, Stuhmer W, Imoto K, Numa S (1992) Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 356:441–443

    Article  PubMed  CAS  Google Scholar 

  • Hille B (2001) Ionic channels of excitable membranes. Sinauer Associates, Sunderland

    Google Scholar 

  • Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192

    Google Scholar 

  • Hong MP, Vu K, Bautos J, Gelli A (2010) Cch1 restores intracellular Ca2+ in fungal cells during endoplasmic reticulum stress. J Biol Chem 285:10951–10958

    Article  PubMed  CAS  Google Scholar 

  • Ishibashi K, Suzuki M, Imai M (2000) Molecular cloning of a novel form (two-repeat) protein related to voltage-gated sodium and calcium channels. Biochem Biophys Res Commun 270:370–376

    Article  PubMed  CAS  Google Scholar 

  • Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9:286–298

    Article  PubMed  CAS  Google Scholar 

  • Khakh BS, North RA (2006) P2X receptors as cell-surface ATP sensors in health and disease. Nature 442:527–532

    Article  PubMed  CAS  Google Scholar 

  • King N, Carroll SB (2001) A receptor tyrosine kinase from choanoflagellates: molecular insights into early animal evolution. Proc Natl Acad Sci USA 98:15032–15037

    Article  PubMed  CAS  Google Scholar 

  • King N, Hittinger CT, Carroll SB (2003) Evolution of key cell signaling and adhesion protein families predates animal origins. Science 301:361–363

    Article  PubMed  CAS  Google Scholar 

  • King N, Westbrook MJ, Young SL, Kuo A, Abedin M, Chapman J, Fairclough S, Hellsten U, Isogai Y, Letunic I, Marr M, Pincus D, Putnam N, Rokas A, Wright KJ, Zuzow R, Dirks W, Good M, Goodstein D, Lemons D, Li W, Lyons JB, Morris A, Nichols S, Richter DJ, Salamov A, Sequencing JG, Bork P, Lim WA, Manning G, Miller WT, McGinnis W, Shapiro H, Tjian R, Grigoriev IV, Rokhsar D (2008) The genome of the choanoflagellate Monosiga brevicollis and the origins of metazoan multicellularity. Nature 451:783–788

    Article  PubMed  CAS  Google Scholar 

  • Koishi R, Xu H, Ren D, Navarro B, Spiller BW, Shi Q, Clapham DE (2004) A superfamily of voltage-gated sodium channels in bacteria. J Biol Chem 279:9532–9538

    Article  PubMed  CAS  Google Scholar 

  • Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25:1307–1320

    Article  PubMed  CAS  Google Scholar 

  • Li W, Young SL, King N, Miller WT (2008) Signaling properties of a non-metazoan Src kinase and the evolutionary history of Src negative regulation. J Biol Chem 283:15491–15501

    Article  PubMed  CAS  Google Scholar 

  • Liebeskind BJ, Hillis DM, Zakon HH (2011) Evolution of sodium channels predates the origin of nervous systems in animals. Proc Natl Acad Sci USA 108:9154–9159

    Article  PubMed  CAS  Google Scholar 

  • Lopreato GF, Lu Y, Southwell A, Atkinson NS, Hillis DM, Wilcox TP, Zakon HH (2001) Evolution and divergence of sodium channel genes in vertebrates. Proc Natl Acad Sci USA 98:7588–7592

    Article  PubMed  CAS  Google Scholar 

  • Loytynoja A, Goldman N (2010) webPRANK: a phylogeny-aware multiple sequence aligner with interactive alignment browser. BMC Bioinformatics 11:579

    Article  PubMed  CAS  Google Scholar 

  • Lu B, Su Y, Das S, Liu J, Xia J, Ren D (2007) The neuronal channel NALCN contributes resting sodium permeability and is required for normal respiratory rhythm. Cell 129:371–383

    Article  PubMed  CAS  Google Scholar 

  • Medina M (2005) Genomes, phylogeny, and evolutionary systems biology. Proc Natl Acad Sci USA 102(1):6630–6635

    Article  PubMed  CAS  Google Scholar 

  • Nicholas K, Nicholas H, Deerfield D (1997) Genedoc: analysis and visualization of genetic variation. EMBNET News 4:1–4

    Google Scholar 

  • Page RD (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Patel S, Marchant JS, Brailoiu E (2010) Two-pore channels: regulation by NAADP and customized roles in triggering calcium signals. Cell Calcium 47:480–490

    Article  PubMed  CAS  Google Scholar 

  • Payandeh J, Scheuer T, Zheng N, Catterall WA (2011) The crystal structure of a voltage-gated sodium channel. Nature 475:353–358

    Article  PubMed  CAS  Google Scholar 

  • Plummer NW, Meisler MH (1999) Evolution and diversity of mammalian sodium channel genes. Genomics 57:323–331

    Article  PubMed  CAS  Google Scholar 

  • Ren D, Navarro B, Xu H, Yue L, Shi Q, Clapham DE (2001) A prokaryotic voltage-gated sodium channel. Science 294:2372–2375

    Article  PubMed  CAS  Google Scholar 

  • Rokas A (2008) The origins of multicellularity and the early history of the genetic toolkit for animal development. Annu Rev Genet 42:235–251

    Article  PubMed  CAS  Google Scholar 

  • Rosati B, McKinnon D (2009) Structural and regulatory evolution of cellular electrophysiological systems. Evol Dev 11:610–618

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Trillo I, Burger G, Holland PW, King N, Lang BF, Roger AJ, Gray MW (2007) The origins of multicellularity: a multi-taxon genome initiative. Trends Genet 23:113–118

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Trillo I, Roger AJ, Burger G, Gray MW, Lang BF (2008) A phylogenomic investigation into the origin of metazoa. Mol Biol Evol 25:664–672

    Article  PubMed  CAS  Google Scholar 

  • Sebe-Pedros A, Roger AJ, Lang FB, King N, Ruiz-Trillo I (2010) Ancient origin of the integrin-mediated adhesion and signaling machinery. Proc Natl Acad Sci USA 107:10142–10147

    Article  PubMed  CAS  Google Scholar 

  • Steenkamp ET, Wright J, Baldauf SL (2006) The protistan origins of animals and fungi. Mol Biol Evol 23:93–106

    Article  PubMed  CAS  Google Scholar 

  • Strong M, Chandy KG, Gutman GA (1993) Molecular evolution of voltage-sensitive ion channel genes: on the origins of electrical excitability. Mol Biol Evol 10:221–242

    PubMed  CAS  Google Scholar 

  • Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577

    Article  PubMed  CAS  Google Scholar 

  • Widmark J, Sundstrom G, Ocampo Daza D, Larhammar D (2011) Differential evolution of voltage-gated sodium channels in tetrapods and teleost fishes. Mol Biol Evol 28:859–871

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Ellinor PT, Sather WA, Zhang JF, Tsien RW (1993) Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels. Nature 366:158–161

    Article  PubMed  CAS  Google Scholar 

  • Yue L, Navarro B, Ren D, Ramos A, Clapham DE (2002) The cation selectivity filter of the bacterial sodium channel, NaChBac. J Gen Physiol 120:845–853

    Article  PubMed  CAS  Google Scholar 

  • Zakon HH, Lu Y, Zwickl DJ, Hillis DM (2006) Sodium channel genes and the evolution of diversity in communication signals of electric fishes: convergent molecular evolution. Proc Natl Acad Sci USA 103:3675–3680

    Article  PubMed  CAS  Google Scholar 

  • Zakon HH, Jost MC, Lu Y (2011) Expansion of voltage-dependent Na+ channel gene family in early tetrapods coincided with the emergence of terrestriality and increased brain complexity. Mol Biol Evol 28:1415–1424

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was initiated as part of the Ion Channel Genomics Study when I was at Duke University Medical Center. I thank the Broad Institute and the investigators of the Origins of Multicellularity Sequencing Project, Broad Institute of Harvard, and MIT (http://www.broadinstitute.org/) for making data publicly available, and several anonymous reviewers for their valuable suggestions and insightful comments. I also thank Yanhong Zhang for technical assistance and critical reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinjiang Cai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

232_2012_9415_MOESM1_ESM.tif

Fig. S1. Phylogenetic analysis of NaV and CaV channel homologs by using the four-domain human NALCN channel as the outgroup. Phylogenetic analysis was performed as shown in Fig. 2 legend. Bootstrap values greater than 60 are shown at the nodes. For species abbreviations, see Fig. 2 legend (TIFF 6759 kb)

232_2012_9415_MOESM2_ESM.tif

Fig. S2. Phylogenetic analysis of NaV and CaV channel homologs by using two prokaryotic single domain voltage-dependent NaV channels as the outgroup. The phylogenetic three was constructed as shown in Fig. 2 legend. Bootstrap values greater than 60 are shown at the nodes. For species abbreviations, see Fig. 2 legend (TIFF 7012 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, X. Ancient Origin of Four-Domain Voltage-gated Na+ Channels Predates the Divergence of Animals and Fungi. J Membrane Biol 245, 117–123 (2012). https://doi.org/10.1007/s00232-012-9415-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-012-9415-9

Keywords

Navigation