Skip to main content

Advertisement

Log in

Intracranial Nonthermal Irreversible Electroporation: In Vivo Analysis

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Nonthermal irreversible electroporation (NTIRE) is a new minimally invasive technique to treat cancer. It is unique because of its nonthermal mechanism of tumor ablation. Intracranial NTIRE procedures involve placing electrodes into the targeted area of the brain and delivering a series of short but intense electric pulses. The electric pulses induce irreversible structural changes in cell membranes, leading to cell death. We correlated NTIRE lesion volumes in normal brain tissue with electric field distributions from comprehensive numerical models. The electrical conductivity of brain tissue was extrapolated from the measured in vivo data and the numerical models. Using this, we present results on the electric field threshold necessary to induce NTIRE lesions (495–510 V/cm) in canine brain tissue using 90 50-μs pulses at 4 Hz. Furthermore, this preliminary study provides some of the necessary numerical tools for using NTIRE as a brain cancer treatment. We also computed the electrical conductivity of brain tissue from the in vivo data (0.12–0.30 S/m) and provide guidelines for treatment planning and execution. Knowledge of the dynamic electrical conductivity of the tissue and electric field that correlates to lesion volume is crucial to ensure predictable complete NTIRE treatment while minimizing damage to surrounding healthy tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-Sakere B, Andre F, Bernat C, Connault E, Opolon P, Davalos RV, Rubinsky B, Mir LM (2007a) Tumor ablation with irreversible electroporation. PLoS ONE 11:e1135

    Article  Google Scholar 

  • Al-Sakere B, Bernat C, Andre F, Connault E, Opolon P, Davalos RV, Mir LM (2007b) A study of the immunological response to tumor ablation with irreversible electroporation. Technol Cancer Res Treat 6:301–306

    CAS  PubMed  Google Scholar 

  • Ball C, Thomson KR, Kavnoudias H (2010) Irreversible electroporation: a new challenge in “out of operating theater” anesthesia. Anesth Analg 110:1305–1309

    Article  PubMed  Google Scholar 

  • Becker SM, Kuznetsov AV (2006) Numerical modeling of in vivo plate electroporation thermal dose assessment. J Biomech Eng 128:76–84

    Article  CAS  PubMed  Google Scholar 

  • Cha S (2009) Neuroimaging in neuro-oncology. Neurotherapeutics 6:465–477

    Article  CAS  PubMed  Google Scholar 

  • Cherubini GB, Mantis P, Martinez TA, Lamb CR, Cappello R (2005) Utility of magnetic resonance imaging for distinguishing neoplastic from non-neoplastic brain lesions in dogs and cats. Vet Radiol Ultrasound 46:384–387

    Article  PubMed  Google Scholar 

  • Cosman ER Jr, Cosman ER Sr (2005) Electric and thermal field effects in tissue around radiofrequency electrodes. Pain Med 6:405–424

    Article  PubMed  Google Scholar 

  • Cukjati D, Batiuskaite D, Andre F, Miklavcic D, Mir LM (2007) Real time electroporation control for accurate and safe in vivo non-viral gene therapy. Bioelectrochemistry 70:501–507

    Article  CAS  PubMed  Google Scholar 

  • Davalos RV, Rubinsky B (2004) Electrical impedance tomography of cell viability in tissue with application to cryosurgery. J Biomech Eng 126:305–309

    Article  PubMed  Google Scholar 

  • Davalos RV, Rubinsky B (2008) Temperature considerations during irreversible electroporation. Int J Heat Mass Transfer 51:5617–5622

    Article  Google Scholar 

  • Davalos RV, Rubinsky B, Mir LM (2003) Theoretical analysis of the thermal effects during in vivo tissue electroporation. Bioelectrochemistry 61:99–107

    Article  CAS  PubMed  Google Scholar 

  • Davalos RV, Otten DM, Mir LM, Rubinsky B (2004) Electrical impedance tomography for imaging tissue electroporation. IEEE Trans Biomed Eng 51:761–767

    Article  PubMed  Google Scholar 

  • Davalos RV, Mir LM, Rubinsky B (2005) Tissue ablation with irreversible electroporation. Ann Biomed Eng 33:223–231

    Article  CAS  PubMed  Google Scholar 

  • Dewhirst MW, Viglianti BL, Lora-Michiels M, Hanson M, Hoopes PJ (2003) Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperthermia 19:267–294

    Article  CAS  PubMed  Google Scholar 

  • Duck FA (1990) Physical properties of tissues: a comprehensive reference book. Academic Press, San Diego

    Google Scholar 

  • Edd JF, Davalos RV (2007) Mathematical modeling of irreversible electroporation for treatment planning. Technol Cancer Res Treat 6:275–286

    PubMed  Google Scholar 

  • Edd JF, Horowitz L, Davalos RV, Mir LM, Rubinsky B (2006) In vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE Trans Biomed Eng 53:1409–1415

    Article  PubMed  Google Scholar 

  • Ellis TL, Garcia PA, Rossmeisl JH, Henao-Guerrero N, Robertson J, Davalos RV (2010) Nonthermal irreversible electroporation for intracranial surgical applications. J Neurosur (in print)

  • Garcia PA, Rossmeisl JH, Robertson J, Ellis TL, Davalos RV (2009) Pilot study of irreversible electroporation for intracranial surgery. Conf Proc IEEE Eng Med Biol Soc 1:6513–6516

    Google Scholar 

  • Ivorra A (2010) Tissue electroporation as a biolectric phenomenon: basic concepts. In: Rubinsky B (ed) Irreversible electroporation. Springer, Berlin, pp 23–61

    Chapter  Google Scholar 

  • Ivorra A, Rubinsky B (2007) In vivo electrical impedance measurements during and after electroporation of rat liver. Bioelectrochemistry 70:287–295

    Article  CAS  PubMed  Google Scholar 

  • Ivorra A, Al-Sakere B, Rubinsky B, Mir LM (2009) In vivo electrical conductivity measurements during and after tumor electroporation: conductivity changes reflect the treatment outcome. Phys Med Biol 54:5949–5963

    Article  PubMed  Google Scholar 

  • Jaffe R (2002) The practice of electroconvulsive therapy: recommendations for treatment, training, and privileging. A task force report of the American Psychiatric Association, 2nd edn. Am J Psychiatry 159:331

  • Lackovic I, Magjarevic R, Miklavcic D (2009) Three-dimensional finite-element analysis of joule heating in electrochemotherapy and in vivo gene electrotransfer. IEEE Trans Dielec Elec Insul 16:1338–1347

    Article  CAS  Google Scholar 

  • Latikka J, Kuurne T, Eskola H (2001) Conductivity of living intracranial tissues. Phys Med Biol 46:1611–1616

    Article  CAS  PubMed  Google Scholar 

  • Lee RC, Zhang D, Hannig J (2000) Biophysical injury mechanisms in electrical shock trauma. Annu Rev Biomed Eng 2:477–509

    Article  CAS  PubMed  Google Scholar 

  • Lee EW, Loh CT, Kee ST (2007) Imaging guided percutaneous irreversible electroporation: ultrasound and immunohistological correlation. Technol Cancer Res Treat 6:287–294

    PubMed  Google Scholar 

  • Macek-Lebar A, Miklavcic D (2001) Cell electropermeabilization to small molecules in vitro: control by pulse parameters. Radiol Oncol 35:193–202

    Google Scholar 

  • Matsumi N, Matsumoto K, Mishima N, Moriyama E, Furuta T, Nishimoto A, Taguchi K (1994) Thermal damage threshold of brain tissue–histological study of heated normal monkey brains. Neurol Med Chir (Tokyo) 34:209–215

    Article  CAS  Google Scholar 

  • Miklavcic D, Semrov D, Mekid H, Mir LM (2000) A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy. Biochim Biophys Acta 1523:73–83

    CAS  PubMed  Google Scholar 

  • Mir LM (2001) Therapeutic perspectives of in vivo cell electropermeabilization. Bioelectrochemistry 53:1–10

    Article  CAS  PubMed  Google Scholar 

  • Neal RE II, Davalos RV (2009) The feasibility of irreversible electroporation for the treatment of breast cancer and other heterogeneous systems. Ann Biomed Eng 37:2615–2625

    Article  PubMed  Google Scholar 

  • Onik G, Mikus P, Rubinsky B (2007) Irreversible electroporation: implications for prostate ablation. Technol Cancer Res Treat 6:295–300

    PubMed  Google Scholar 

  • Pavselj N, Bregar Z, Cukjati D, Batiuskaite D, Mir LM, Miklavcic D (2005) The course of tissue permeabilization studied on a mathematical model of a subcutaneous tumor in small animals. IEEE Trans Biomed Eng 52:1373–1381

    Article  PubMed  Google Scholar 

  • Rubinsky B (2007) Irreversible electroporation in medicine. Technol Cancer Res Treat 6:255–260

    PubMed  Google Scholar 

  • Rubinsky B, Onik G, Mikus P (2007) Irreversible electroporation: a new ablation modality–clinical implications. Technol Cancer Res Treat 6:37–48

    PubMed  Google Scholar 

  • Sapareto SA, Dewey WC (1984) Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 10:787–800

    CAS  PubMed  Google Scholar 

  • Sel D, Cukjati D, Batiuskaite D, Slivnik T, Mir LM, Miklavcic D (2005) Sequential finite element model of tissue electropermeabilization. IEEE Trans Biomed Eng 52:816–827

    Article  PubMed  Google Scholar 

  • Sel D, Lebar AM, Miklavcic D (2007) Feasibility of employing model-based optimization of pulse amplitude and electrode distance for effective tumor electropermeabilization. IEEE Trans Biomed Eng 54:773–781

    Article  PubMed  Google Scholar 

  • Thomas WB, Wheeler SJ, Kramer R, Kornegay JN (1996) Magnetic resonance imaging features of primary brain tumors in dogs. Vet Radiol Ultrasound 37:20–27

    Article  Google Scholar 

  • Thomson K (2010) Human experience with irreversible electroporation. In: Rubinsky B (ed) Irreversible electroporation. Springer, Berlin, pp 249–254

    Chapter  Google Scholar 

  • Uzuka T, Tanaka R, Takahashi H, Kakinuma K, Matsuda J, Kato K (2001) Planning of hyperthermic treatment for malignant glioma using computer simulation. Int J Hyperthermia 17:114–122

    Article  CAS  PubMed  Google Scholar 

  • Werner J, Buse M (1988) Temperature profiles with respect to inhomogeneity and geometry of the human body. J Appl Physiol 65:1110–1118

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the Coulter Foundation. Davalos acknowledges support from NSF CBET-0933335 towards the modeling effort presented in the manuscript. The authors thank Gregory B. Daniel, Carolina Ricco, Dana Calicott, Barbara Kafka and Stephanie Milburn for their assistance in surgery and Lindsey Buracker and Chris Arena for their help in treatment planning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael V. Davalos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia, P.A., Rossmeisl, J.H., Neal, R.E. et al. Intracranial Nonthermal Irreversible Electroporation: In Vivo Analysis. J Membrane Biol 236, 127–136 (2010). https://doi.org/10.1007/s00232-010-9284-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-010-9284-z

Keywords

Navigation