Skip to main content
Log in

Epithelial Barrier Modulation by a Channel Forming Peptide

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

NC-1059 is a synthetic channel-forming peptide that provides for ion transport across, and transiently reduces the barrier integrity of, cultured epithelial monolayers derived from canine kidney (MDCK cells). Experiments were conducted to determine whether epithelial cells derived from other sources were similarly affected. Epithelial cells derived from human intestine (T-84), airway (Calu-3), porcine intestine (IPEC-J2) and reproductive duct (PVD9902) were grown on permeable supports. Basal short circuit current (I sc) was <3 μA cm−2 for T-84, IPEC-J2 and PVD9902 cell monolayers and <8 μA cm−2 for Calu-3 cells. Apical NC-1059 exposure caused, in all cell types, an increase in I sc to >15 μA cm−2, indicative of net anion secretion or cation absorption, which was followed by an increase in transepithelial conductance (in mS cm−2: T-84, 1.6 to 62; PVD9902, 0.2 to 51; IPEC-J2, 0.3 to 26; Calu-3, 2.3 to 13). These results are consistent with the peptide affecting transcellular ion movement, with a likely effect also on the paracellular route. NC-1059 exposure increased dextran permeation when compared to basal permeation, which documents an effect on the paracellular pathway. In order to evaluate membrane ion channels, experiments were conducted to study the dose dependence and stability of the NC-1059-induced membrane conductance in Xenopus laevis oocytes. NC-1059 induced a dose-dependent increase in oocyte membrane conductance that remained stable for greater than 2 h. The results demonstrate that NC-1059 increases transcellular conductance and paracellular permeation in a wide range of epithelia. These effects might be exploited to promote drug delivery across barrier epithelia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acharya P, Beckel J, Ruiz WG, Wang E, Rojas R, Birder L, Apodaca G (2004) Distribution of the tight junction proteins ZO-1, occludin, and claudin-4, -8, and -12 in bladder epithelium. Am J Physiol 287:F305–F318

    Article  CAS  Google Scholar 

  • Anderson JM, Van Itallie CM (1995) Tight junctions and the molecular basis for regulation of paracellular permeability. Am J Physiol 269:G467–G475

    PubMed  CAS  Google Scholar 

  • Bell JE, Miller C (1984) Effects of phospholipid surface charge on ion conduction in the K+ channel of sarcoplasmic reticulum. Biophys J 45:279–287

    PubMed  CAS  Google Scholar 

  • Broughman JR, Mitchell KE, Sedlacek RL, Iwamoto T, Tomich JM, Schultz BD (2001) NH2-terminal modification of a channel-forming peptide increases capacity for epithelial anion secretion. Am J Physiol 280:C451–C458

    CAS  Google Scholar 

  • Broughman JR, Shank LP, Prakash O, Schultz BD, Iwamoto T, Tomich JM, Mitchell K (2002a) Structural implications of placing cationic residues at either the NH2- or COOH-terminus in a pore-forming synthetic peptide. J Membr Biol 190:93–103

    Article  PubMed  CAS  Google Scholar 

  • Broughman JR, Shank LP, Takeguchi W, Schultz BD, Iwamoto T, Mitchell KE, Tomich JM (2002b) Distinct structural elements that direct solution aggregation and membrane assembly in the channel-forming peptide M2GlyR. Biochemistry 41:7350–7358

    Article  PubMed  CAS  Google Scholar 

  • Broughman JR, Brandt RM, Hastings C, Iwamoto T, Tomich JM, Schultz BD (2004) Channel-forming peptide modulates transepithelial electrical conductance and solute permeability. Am J Physiol 286:C1312–C1323

    Article  CAS  Google Scholar 

  • Carlin RW, Sedlacek RL, Quesnell RR, Pierucci-Alves F, Grieger DM, Schultz BD (2006) PVD9902, a porcine vas deferens epithelial cell line that exhibits neurotransmitter-stimulated anion secretion and expresses numerous HCO 3 transporters. Am J Physiol 290:C1560–C1571

    Article  CAS  Google Scholar 

  • Chung NP, Mruk D, Mo MY, Lee WM, Cheng CY (2001) A 22–amino acid synthetic peptide corresponding to the second extracellular loop of rat occludin perturbs the blood–testis barrier and disrupts spermatogenesis reversibly in vivo. Biol Reprod 65:1340–1351

    Article  PubMed  CAS  Google Scholar 

  • Devor DC, Singh AK, Bridges RJ, Frizzell RA (1996a) Modulation of Cl secretion by benzimidazolones. II Coordinate regulation of apical GCl and basolateral GK. Am J Physiol 271:L785–L795

    PubMed  CAS  Google Scholar 

  • Devor DC, Singh AK, Frizzell RA, Bridges RJ (1996b) Modulation of Cl secretion by benzimidazolones. I Direct activation of a Ca2+-dependent K+ channel. Am J Physiol 271:L775–L784

    PubMed  CAS  Google Scholar 

  • Edward A, Prausnitz MR (2001) Predicted permeability of the cornea to topical drugs. Pharm Res 18:1497–1508

    Article  PubMed  CAS  Google Scholar 

  • Everett RS, Vanhook MK, Barozzi N, Toth I, Johnson LG (2006) Specific modulation of airway epithelial tight junctions by apical application of an occludin peptide. Mol Pharmacol 69:492–500

    Article  PubMed  CAS  Google Scholar 

  • Fasano A (2000) Regulation of intercellular tight junctions by zonula occludens toxin and its eukaryotic analogue zonulin. Ann N Y Acad Sci 915:214–222

    Article  PubMed  CAS  Google Scholar 

  • Fasano A, Fiorentini C, Donelli G, Uzzau S, Kaper JB, Margaretten K, Ding X, Guandalini S, Comstock L, Goldblum SE (1995) Zonula occludens toxin modulates tight junctions through protein kinase C-dependent actin reorganization, in vitro. J Clin Invest 96:710–720

    Article  PubMed  CAS  Google Scholar 

  • Fasano A, Uzzau S (1997) Modulation of intestinal tight junctions by zonula occludens toxin permits enteral administration of insulin and other macromolecules in an animal model. J Clin Invest 99:1158–1164

    Article  PubMed  CAS  Google Scholar 

  • Furuse M, Fujimoto K, Sato N, Hirase T, Tsukita S (1996) Overexpression of occludin, a tight junction-associated integral membrane protein, induces the formation of intracellular multilamellar bodies bearing tight junction-like structures. J Cell Sci 109(Pt 2):429–435

    PubMed  CAS  Google Scholar 

  • Furuse M, Furuse K, Sasaki H, Tsukita S (2001) Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells. J Cell Biol 153:263–272

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez C, Kanevsky D, De Marco R, Di Girolamo G, Santoro S (2006) Non-invasive routes for insulin administration: current state and perspectives. Expert Opin Drug Deliv 3:763–770

    Article  PubMed  CAS  Google Scholar 

  • Heiskala M, Peterson PA, Yang Y (2001) The roles of claudin superfamily proteins in paracellular transport. Traffic 2:93–98

    Article  PubMed  CAS  Google Scholar 

  • Kondoh M, Yagi K (2007) Progress in absorption enhancers based on tight junction. Expert Opin Drug Deliv 4:275–286

    Article  PubMed  CAS  Google Scholar 

  • Lacaz-Vieira F, Jaeger MM, Farshori P, Kachar B (1999) Small synthetic peptides homologous to segments of the first external loop of occludin impair tight junction resealing. J Membr Biol 168:289–297

    Article  PubMed  CAS  Google Scholar 

  • Lin MC, Kagan BL (2002) Electrophysiologic properties of channels induced by Abeta25–35 in planar lipid bilayers. Peptides 23:1215–1228

    Article  PubMed  CAS  Google Scholar 

  • McCarthy KM, Skare IB, Stankewich MC, Furuse M, Tsukita S, Rogers RA, Lynch RD, Schneeberger EE (1996) Occludin is a functional component of the tight junction. J Cell Sci 109(Pt 9):2287–2298

    PubMed  CAS  Google Scholar 

  • Peppas NA, Wood KM, Blanchette JO (2004) Hydrogels for oral delivery of therapeutic proteins. Expert Opin Biol Ther 4:881–887

    Article  PubMed  CAS  Google Scholar 

  • Schneeberger EE, Lynch RD (2004) The tight junction: a multifunctional complex. Am J Physiol 286:C1213–C1228

    Article  CAS  Google Scholar 

  • Shen BQ, Finkbeiner WE, Wine JJ, Mrsny RJ, Widdicombe JH (1994) Calu-3: a human airway epithelial cell line that shows cAMP-dependent Cl secretion. Am J Physiol 266:L493–L501

    PubMed  CAS  Google Scholar 

  • Spring KR (1998) Routes and mechanism of fluid transport by epithelia. Annu Rev Physiol 60:105–119

    Article  PubMed  CAS  Google Scholar 

  • Spring KR, Hope A (1978) Size and shape of the lateral intercellular spaces in a living epithelium. Science 200:54–58

    Article  PubMed  CAS  Google Scholar 

  • Tavelin S, Hashimoto K, Malkinson J, Lazorova L, Toth I, Artursson P (2003) A new principle for tight junction modulation based on occludin peptides. Mol Pharmacol 64:1530–1540

    Article  PubMed  CAS  Google Scholar 

  • Thompson SE, Cavitt J, Audus KL (1994) Leucine enkephalin effects on paracellular and transcellular permeation pathways across brain microvessel endothelial cell monolayers. J Cardiovasc Pharmacol 24:818–825

    PubMed  CAS  Google Scholar 

  • Tomich JM, Wallace D, Henderson K, Mitchell KE, Radke G, Brandt R, Ambler CA, Scott AJ, Grantham J, Sullivan L, Iwamoto T (1998) Aqueous solubilization of transmembrane peptide sequences with retention of membrane insertion and function. Biophys J 74:256–267

    Article  PubMed  CAS  Google Scholar 

  • Torchilin VP (2000) Drug targeting. Eur J Pharm Sci 11(Suppl 2):S81–S91

    Article  PubMed  CAS  Google Scholar 

  • Turker S, Onur E, Ozer Y (2004) Nasal route and drug delivery systems. Pharm World Sci 26:137–142

    Article  PubMed  Google Scholar 

  • Wallace DP, Tomich JM, Iwamoto T, Henderson K, Grantham JJ, Sullivan LP (1997) A synthetic peptide derived from glycine-gated Cl channel induces transepithelial Cl and fluid secretion. Am J Physiol 272:C1672–C1679

    PubMed  CAS  Google Scholar 

  • Wong V, Gumbiner BM (1997) A synthetic peptide corresponding to the extracellular domain of occludin perturbs the tight junction permeability barrier. J Cell Biol 136:399–409

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Prausnitz MR, Edwards A (2004) Model of transient drug diffusion across cornea. J Control Release 99:241–258

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Gary Radke and Ryan Carlin for their technical assistance. This article is contribution 08-76-J from the Kansas Agriculture Experiment Station. This study was supported in part by Public Health Service grants GM 066620 and GM 074096 (both to J. M. T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce D. Schultz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Somasekharan, S., Brandt, R., Iwamoto, T. et al. Epithelial Barrier Modulation by a Channel Forming Peptide. J Membrane Biol 222, 17–30 (2008). https://doi.org/10.1007/s00232-008-9099-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-008-9099-3

Keywords

Navigation