Skip to main content
Log in

Turnover Rate of the γ-Aminobutyric Acid Transporter GAT1

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

We combined electrophysiological and freeze-fracture methods to estimate the unitary turnover rate of the γ-aminobutyric acid (GABA) transporter GAT1. Human GAT1 was expressed in Xenopus laevis oocytes, and individual cells were used to measure and correlate the macroscopic rate of GABA transport and the total number of transporters in the plasma membrane. The two-electrode voltage-clamp method was used to measure the transporter-mediated macroscopic current evoked by GABA ( \( {I^{{{\rm{GABA}}}}_{{{\rm{NaCl}}}} } \)), macroscopic charge movements (Q NaCl) evoked by voltage pulses and whole-cell capacitance. The same cells were then examined by freeze-fracture and electron microscopy in order to estimate the total number of GAT1 copies in the plasma membrane. GAT1 expression in the plasma membrane led to the appearance of a distinct population of 9-nm freeze-fracture particles which represented GAT1 dimers. There was a direct correlation between Q NaCl and the total number of transporters in the plasma membrane. This relationship yielded an apparent valence of 8 ± 1 elementary charges per GAT1 particle. Assuming that the monomer is the functional unit, we obtained 4 ± 1 elementary charges per GAT1 monomer. This information and the relationship between \( {I^{{{\rm{GABA}}}}_{{{\rm{NaCl}}}} } \) and Q NaCl were used to estimate a GAT1 unitary turnover rate of 15 ± 2 s−1 (21°C, −50 mV). The temperature and voltage dependence of GAT1 were used to estimate the physiological turnover rate to be 79–93 s−1 (37°C, −50 to −90 mV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bacconi A, Ravera S, Virkki LV, Murer H, Forster IC (2007) Temperature dependence of steady-state and presteady-state kinetics of a type IIb Na+/Pi cotransporter. J Membr Biol 215:81–92

    Article  PubMed  CAS  Google Scholar 

  • Baumgartner W, Islas L, Sigworth FJ (1999) Two-microelectrode voltage clamp of Xenopus oocytes: voltage errors and compensation for local current flow. Biophys J 77:1980–1991

    Article  PubMed  CAS  Google Scholar 

  • Bennett ER, Kanner BI (1997) The membrane topology of GAT-1, a (Na+ + Cl)-coupled γ-aminobutyric acid transporter from rat brain. J Biol Chem 272:1203–1210

    Article  PubMed  CAS  Google Scholar 

  • Bezanilla F (2000) The voltage sensor in voltage-dependent ion channels. Physiol Rev 80:555–592

    PubMed  CAS  Google Scholar 

  • Bezanilla F (2002) Voltage sensor movements. J Gen Physiol 120:465–473

    Article  PubMed  CAS  Google Scholar 

  • Bezanilla F, Stefani E (1998) Gating currents. Methods Enzymol 293:331–352

    PubMed  CAS  Google Scholar 

  • Bicho A, Grewer C (2005) Rapid substrate-induced charge movements of the GABA transporter GAT1. Biophys J 89:211–231

    Article  PubMed  CAS  Google Scholar 

  • Binda F, Bossi E, Giovannardi S, Forlani G, Peres A (2002) Temperature effects on the presteady-state and transport-associated currents of GABA cotransporter rGAT1. FEBS Lett 512:303–307

    Article  PubMed  CAS  Google Scholar 

  • Borden LA (1996) GABA transporter heterogeneity: pharmacology and cellular localization. Neurochem Int 29:335–356

    Article  PubMed  CAS  Google Scholar 

  • Bron P, Lagrée V, Froger A, Rolland JP, Hubert JF, Delamarche C, Deschamps S, Pellerin I, Thomas D, Haase W (1999) Oligomerization state of MIP proteins expressed in Xenopus oocytes as revealed by freeze-fracture electron-microscopy analysis. J Struct Biol 128:287–296

    Article  PubMed  CAS  Google Scholar 

  • Cammack JN, Rakhilin SV, Schwartz EA (1994) A GABA transporter operates asymmetrically and with variable stoichiometry. Neuron 13:949–960

    Article  PubMed  CAS  Google Scholar 

  • Chandy G, Zampighi GA, Kreman M, Hall JE (1997) Comparison of the water transporting properties of MIP and AQP1. J Membr Biol 159:29–39

    Article  PubMed  CAS  Google Scholar 

  • Chen NH, Reith ME, Quick MW (2004) Synaptic uptake and beyond: the sodium- and chloride-dependent neurotransmitter transporter family SLC6. Pfluegers Arch 447:519–531

    Article  CAS  Google Scholar 

  • Chiu CS, Jensen K, Sokolova I, Wang D, Li M, Deshpande P, Davidson N, Mody I, Quick MW, Quake SR, Lester HA (2002) Number, density, and surface/cytoplasmic distribution of GABA transporters at presynaptic structures of knock-in mice carrying GABA transporter subtype 1-green fluorescent protein fusions. J Neurosci 22:10251–10266

    PubMed  CAS  Google Scholar 

  • Clark JA (1997) Analysis of the transmembrane topology and membrane assembly of the GAT-1 γ-aminobutyric acid transporter. J Biol Chem 272:14695–14704

    Article  PubMed  CAS  Google Scholar 

  • Conti F, Minelli A, Melone M (2004) GABA transporters in the mammalian cerebral cortex: localization, development and pathological implications. Brain Res Brain Res Rev 45:196–212

    Article  PubMed  CAS  Google Scholar 

  • Dalby NO (2003) Inhibition of γ-aminobutyric acid uptake: anatomy, physiology and effects against epileptic seizures. Eur J Pharmacol 479:127–137

    Article  PubMed  CAS  Google Scholar 

  • Deken SL, Beckman ML, Boos L, Quick MW (2000) Transport rates of GABA transporters: regulation by the N-terminal domain and syntaxin 1A. Nat Neurosci 3:998–1003

    Article  PubMed  CAS  Google Scholar 

  • Dingledine R, Korn SJ (1985) γ-Aminobutyric acid uptake and the termination of inhibitory synaptic potentials in the rat hippocampal slice. J Physiol 366:387–409

    PubMed  CAS  Google Scholar 

  • Draguhn A, Heinemann U (1996) Different mechanisms regulate IPSC kinetics in early postnatal and juvenile hippocampal granule cells. J Neurophysiol 76:3983–3993

    PubMed  CAS  Google Scholar 

  • Engel D, Schmitz D, Gloveli T, Frahm C, Heinemann U, Draguhn A (1998) Laminar difference in GABA uptake and GAT-1 expression in rat CA1. J Physiol 512:643–649

    Article  PubMed  CAS  Google Scholar 

  • Eskandari S, Loo DDF, Dai G, Levy O, Wright EM, Carrasco N (1997) Thyroid Na+/I symporter. Mechanism, stoichiometry, and specificity. J Biol Chem 272:27230–27238

    Article  PubMed  CAS  Google Scholar 

  • Eskandari S, Wright EM, Kreman M, Starace DM, Zampighi GA (1998) Structural analysis of cloned plasma membrane proteins by freeze-fracture electron microscopy. Proc Natl Acad Sci USA 95:11235–11240

    Article  PubMed  CAS  Google Scholar 

  • Eskandari S, Snyder PM, Kreman M, Zampighi GA, Welsh MJ, Wright EM (1999) Number of subunits comprising the epithelial sodium channel. J Biol Chem 274:27281–27286

    Article  PubMed  CAS  Google Scholar 

  • Eskandari S, Kreman M, Kavanaugh MP, Wright EM, Zampighi GA (2000) Pentameric assembly of a neuronal glutamate transporter. Proc Natl Acad Sci USA 97:8641–8646

    Article  PubMed  CAS  Google Scholar 

  • Farhan H, Freissmuth M, Sitte HH (2006) Oligomerization of neurotransmitter transporters: a ticket from the endoplasmic reticulum to the plasma membrane. Handb Exp Pharmacol 175:233–249

    Article  PubMed  CAS  Google Scholar 

  • Fesce R, Giovannardi S, Binda F, Bossi E, Peres A (2002) The relation between charge movement and transport-associated currents in the rat GABA cotransporter rGAT1. J Physiol 545:739–750

    Article  PubMed  CAS  Google Scholar 

  • Forlani G, Bossi E, Ghirardelli R, Giovannardi S, Binda F, Bonadiman L, Ielmini L, Peres A (2001a) Mutation K448E in the external loop 5 of rat GABA transporter rGAT1 induces pH sensitivity and alters substrate interactions. J Physiol 536:479–494

    Google Scholar 

  • Forlani G, Bossi E, Perego C, Giovannardi S, Peres A (2001b) Three kinds of currents in the canine betaine-GABA transporter BGT-1 expressed in Xenopus laevis oocytes. Biochim Biophys Acta 1538:172–180

    Google Scholar 

  • Forster IC, Kohler K, Biber J, Murer H (2002) Forging the link between structure and function of electrogenic cotransporters: the renal type IIa Na+/Pi cotransporter as a case study. Prog Biophys Mol Biol 80:69–108

    Article  PubMed  CAS  Google Scholar 

  • Forster IC, Traebert M, Jankowski M, Stange G, Biber J, Murer H (1999) Protein kinase C activators induce membrane retrieval of type II Na+-phosphate cotransporters expressed in Xenopus oocytes. J Physiol 517:327–340

    Article  PubMed  CAS  Google Scholar 

  • Grewer C, Watzke N, Wiessner M, Rauen T (2000) Glutamate translocation of the neuronal glutamate transporter EAAC1 occurs within milliseconds. Proc Natl Acad Sci USA 97:9706–9711

    Article  PubMed  CAS  Google Scholar 

  • Guastella J, Nelson N, Nelson H, Czyzyk L, Keynan S, Miedel MC, Davidson N, Lester HA, Kanner BI (1990) Cloning and expression of a rat brain GABA transporter. Science 249:1303–1306

    Article  PubMed  CAS  Google Scholar 

  • Gutfreund H (1995) Kinetics for the life sciences. Receptors, transmitters and catalysts. Cambridge University Press, New York

    Google Scholar 

  • Hansra N, Arya S, Quick MW (2004) Intracellular domains of a rat brain GABA transporter that govern transport. J Neurosci 24:4082–4087

    Article  PubMed  CAS  Google Scholar 

  • Hazama A, Loo DDF, Wright EM (1997) Presteady-state currents of the rabbit Na+/glucose cotransporter (SGLT1). J Membr Biol 155:175–186

    Article  PubMed  CAS  Google Scholar 

  • Hilgemann DW, Lu CC (1999) GAT1 (GABA:Na+:Cl) cotransport function. Database reconstruction with an alternating access model. J Gen Physiol 114:459–475

    Article  PubMed  CAS  Google Scholar 

  • Hirsch JR, Loo DDF, Wright EM (1996) Regulation of Na+/glucose cotransporter expression by protein kinases in Xenopus laevis oocytes. J Biol Chem 271:14740–14746

    Article  PubMed  CAS  Google Scholar 

  • Isaacson JS, Solis JM, Nicoll RA (1993) Local and diffuse synaptic actions of GABA in the hippocampus. Neuron 10:165–175

    Article  PubMed  CAS  Google Scholar 

  • Isom LL, Ragsdale DS, De Jongh KS, Westenbroek RE, Reber BF, Scheuer T, Catterall WA (1995) Structure and function of the β2 subunit of brain sodium channels, a transmembrane glycoprotein with a CAM motif. Cell 83:433–442

    Article  PubMed  CAS  Google Scholar 

  • Karakossian MH, Spencer SR, Gomez AQ, Padilla OR, Sacher A, Loo DDF, Nelson N, Eskandari S (2005) Novel properties of a mouse γ-aminobutyric acid transporter (GAT4). J Membr Biol 203:65–82

    Article  PubMed  CAS  Google Scholar 

  • Kavanaugh MP, Arriza JL, North RA, Amara SG (1992) Electrogenic uptake of γ-aminobutyric acid by a cloned transporter expressed in Xenopus oocytes. J Biol Chem 267:22007–22009

    PubMed  CAS  Google Scholar 

  • Keros S, Hablitz JJ (2005) Subtype-specific GABA transporter antagonists synergistically modulate phasic and tonic GABAA conductances in rat neocortex. J Neurophysiol 94:2073–2085

    Article  PubMed  CAS  Google Scholar 

  • Keynan S, Suh YJ, Kanner BI, Rudnick G (1992) Expression of a cloned γ-aminobutyric acid transporter in mammalian cells. Biochemistry 31:1974–1979

    Article  PubMed  CAS  Google Scholar 

  • Krause S, Schwarz W (2005) Identification and selective inhibition of the channel mode of the neuronal GABA transporter 1. Mol Pharmacol 68:1728–1735

    PubMed  CAS  Google Scholar 

  • Krofchick D, Huntley SA, Silverman M (2004) Transition states of the high-affinity rabbit Na+/glucose cotransporter SGLT1 as determined from measurement and analysis of voltage-dependent charge movements. Am J Physiol 287:C46–C54

    Article  CAS  Google Scholar 

  • Loo DDF, Hazama A, Supplisson S, Turk E, Wright EM (1993) Relaxation kinetics of the Na+/glucose cotransporter. Proc Natl Acad Sci USA 90:5767–5771

    Article  PubMed  CAS  Google Scholar 

  • Loo DDF, Eskandari S, Boorer KJ, Sarkar HK, Wright EM (2000) Role of Cl in electrogenic Na+-coupled cotransporters GAT1 and SGLT1. J Biol Chem 275:37414–37422

    Article  PubMed  CAS  Google Scholar 

  • Lu CC, Hilgemann DW (1999a) GAT1 (GABA:Na+:Cl) cotransport function. Steady state studies in giant Xenopus oocyte membrane patches. J Gen Physiol 114:429–444

    Google Scholar 

  • Lu CC, Hilgemann DW (1999b) GAT1 (GABA:Na+:Cl) cotransport function. Kinetic studies in giant Xenopus oocyte membrane patches. J Gen Physiol 114:445–457

    Google Scholar 

  • Lu CC, Kabakov A, Markin VS, Mager S, Frazier GA, Hilgemann DW (1995) Membrane transport mechanisms probed by capacitance measurements with megahertz voltage clamp. Proc Natl Acad Sci USA 92:11220–11224

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie B, Loo DDF, Fei YJ, Liu W, Ganapathy V, Leibach FH, Wright EM (1996) Mechanisms of the human intestinal H+-coupled oligopeptide transporter hPEPT1. J Biol Chem 271:5430–5437

    Article  PubMed  CAS  Google Scholar 

  • Mager S, Naeve J, Quick M, Labarca C, Davidson N, Lester HA (1993) Steady states, charge movements, and rates for a cloned GABA transporter expressed in Xenopus oocytes. Neuron 10:177–188

    Article  PubMed  CAS  Google Scholar 

  • Mager S, Kleinberger-Doron N, Keshet GI, Davidson N, Kanner BI, Lester HA (1996) Ion binding and permeation at the GABA transporter GAT1. J Neurosci 16:5405–5414

    PubMed  CAS  Google Scholar 

  • Mim C, Balani P, Rauen T, Grewer C (2005) The glutamate transporter subtypes EAAT4 and EAATs 1–3 transport glutamate with dramatically different kinetics and voltage dependence but share a common uptake mechanism. J Gen Physiol 126:571–589

    Article  PubMed  CAS  Google Scholar 

  • Nelson N (1998) The family of Na+/Cl neurotransmitter transporters. J Neurochem 71:1785–1803

    Article  PubMed  CAS  Google Scholar 

  • Nelson H, Mandiyan S, Nelson N (1990) Cloning of the human brain GABA transporter. FEBS Lett 269:181–184

    Article  PubMed  CAS  Google Scholar 

  • Otis TS, Kavanaugh MP (2000) Isolation of current components and partial reaction cycles in the glial glutamate transporter EAAT2. J Neurosci 20:2749–2757

    PubMed  CAS  Google Scholar 

  • Overstreet LS, Jones MV, Westbrook GL (2000) Slow desensitization regulates the availability of synaptic GABAA receptors. J Neurosci 20:7914–7921

    PubMed  CAS  Google Scholar 

  • Overstreet LS, Westbrook GL (2003) Synapse density regulates independence at unitary inhibitory synapses. J Neurosci 23:2618–2626

    PubMed  CAS  Google Scholar 

  • Parent L, Supplisson S, Loo DD, Wright EM (1992) Electrogenic properties of the cloned Na+/glucose cotransporter: II. A transport model under nonrapid equilibrium conditions. J Membr Biol 125:63–79

    PubMed  CAS  Google Scholar 

  • Parent L, Wright EM (1993) Electrophysiology of the Na+/glucose cotransporter. In: Reuss L, Russell JM Jr, Jennings ML (eds) Molecular biology and function of carrier proteins. Rockefeller University Press, New York, pp 263–281

    Google Scholar 

  • Quick MW (2002) Substrates regulate γ-aminobutyric acid transporters in a syntaxin 1A-dependent manner. Proc Natl Acad Sci USA 99:5686–5691

    Article  PubMed  CAS  Google Scholar 

  • Radian R, Bendahan A, Kanner BI (1986) Purification and identification of the functional sodium- and chloride-coupled γ-aminobutyric acid transport glycoprotein from rat brain. J Biol Chem 261:15437–15441

    PubMed  CAS  Google Scholar 

  • Richerson GB, Wu Y (2003) Dynamic equilibrium of neurotransmitter transporters: not just for reuptake anymore. J Neurophysiol 90:1363–1374

    Article  PubMed  CAS  Google Scholar 

  • Roepstorff A, Lambert JD (1992) Comparison of the effect of the GABA uptake blockers, tiagabine and nipecotic acid, on inhibitory synaptic efficacy in hippocampal CA1 neurones. Neurosci Lett 146:131–134

    Article  PubMed  CAS  Google Scholar 

  • Roepstorff A, Lambert JD (1994) Factors contributing to the decay of the stimulus-evoked IPSC in rat hippocampal CA1 neurons. J Neurophysiol 72:2911–2926

    PubMed  CAS  Google Scholar 

  • Rossi DJ, Hamann M (1998) Spillover-mediated transmission at inhibitory synapses promoted by high affinity alpha6 subunit GABAA receptors and glomerular geometry. Neuron 20:783–795

    Article  PubMed  CAS  Google Scholar 

  • Sacher A, Nelson N, Ogi JT, Wright EM, Loo DDF, Eskandari S (2002) Presteady-state and steady-state kinetics, and turnover rate of the mouse γ-aminobutyric acid transporter (mGAT3). J Membr Biol 190:57–73

    Article  PubMed  CAS  Google Scholar 

  • Schmid JA, Scholze P, Kudlacek O, Freissmuth M, Singer EA, Sitte HH (2001) Oligomerization of the human serotonin transporter and of the rat GABA transporter 1 visualized by fluorescence resonance energy transfer microscopy in living cells. J Biol Chem 276:3805–3810

    Article  PubMed  CAS  Google Scholar 

  • Scholze P, Freissmuth M, Sitte HH (2002) Mutations within an intramembrane leucine heptad repeat disrupt oligomer formation of the rat GABA transporter 1. J Biol Chem 277:43682–43690

    Article  PubMed  CAS  Google Scholar 

  • Segel IH (1975) Enzyme kinetics: behavior and analysis of rapid equilibrium and steady-state enzyme systems. Wiley, New York

    Google Scholar 

  • Sitte HH, Freissmuth M (2003) Oligomer formation by Na+-Cl-coupled neurotransmitter transporters. Eur J Pharmacol 479:229–236

    Article  PubMed  CAS  Google Scholar 

  • Soragna A, Bossi E, Giovannardi S, Pisani R, Peres A (2005a) Relations between substrate affinities and charge equilibration rates in the rat GABA cotransporter GAT1. J Physiol 562:333–345

    Google Scholar 

  • Soragna A, Bossi E, Giovannardi S, Pisani R, Peres A (2005b) Functionally independent subunits in the oligomeric structure of the GABA cotransporter rGAT1. Cell Mol Life Sci 62:2877–2885

    Google Scholar 

  • Thompson SM, Gähwiler BH (1992) Effects of the GABA uptake inhibitor tiagabine on inhibitory synaptic potentials in rat hippocampal slice cultures. J Neurophysiol 67:1698–1701

    PubMed  CAS  Google Scholar 

  • Trotti D, Peng JB, Dunlop J, Hediger MA (2001) Inhibition of the glutamate transporter EAAC1 expressed in Xenopus oocytes by phorbol esters. Brain Res 914:196–203

    Article  PubMed  CAS  Google Scholar 

  • Wadiche JI, Arriza JL, Amara SG, Kavanaugh MP (1995) Kinetics of a human glutamate transporter. Neuron 14:1019–1027

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Deken SL, Whitworth TL, Quick MW (2003) Syntaxin 1A inhibits GABA flux, efflux, and exchange mediated by the rat brain GABA transporter GAT1. Mol Pharmacol 64:905–913

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Quick MW (2005) Trafficking of the plasma membrane γ-aminobutyric acid transporter GAT1: size and rates of an acutely recycling pool. J Biol Chem 280:18703–18709

    Article  PubMed  CAS  Google Scholar 

  • Watzke N, Bamberg E, Grewer C (2001) Early intermediates in the transport cycle of the neuronal excitatory amino acid carrier EAAC1. J Gen Physiol 117:547–562

    Article  PubMed  CAS  Google Scholar 

  • Whitlow RD, Sacher A, Loo DDF, Nelson N, Eskandari S (2003) The anticonvulsant valproate increases the turnover rate of γ-aminobutyric acid transporters. J Biol Chem 278:17716–17726

    Article  PubMed  CAS  Google Scholar 

  • Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E (2005) Crystal structure of a bacterial homologue of Na+/Cl dependent neurotransmitter transporters. Nature 437:215–223

    Article  PubMed  CAS  Google Scholar 

  • Zampighi GA, Kreman M, Boorer KJ, Loo DDF, Bezanilla F, Chandy G, Hall JE, Wright EM (1995) A method for determining the unitary functional capacity of cloned channels and transporters expressed in Xenopus laevis oocytes. J Membr Biol 148:65–78

    PubMed  CAS  Google Scholar 

  • Zampighi GA, Loo DDF, Kreman M, Eskandari S, Wright EM (1999) Functional and morphological correlates of connexin50 expressed in Xenopus laevis oocytes. J Gen Physiol 113:507–523

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Hamill OP (2000) On the discrepancy between whole-cell and membrane patch mechanosensitivity in Xenopus oocytes. J Physiol 523:101–115

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank Dr. Donald D. F. Loo (Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA) for his insightful comments on this manuscript and Gail M. Drus and Michael J. Errico for technical assistance. This work was supported by a U.S. National Institutes of Health grant awarded to S. E. (S06 GM53933). J. Y. K. was supported by the Howard Hughes Medical Institute–Cal Poly Pomona Undergraduate Research Apprentice Program, 2004–2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sepehr Eskandari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzales, A.L., Lee, W., Spencer, S.R. et al. Turnover Rate of the γ-Aminobutyric Acid Transporter GAT1. J Membrane Biol 220, 33–51 (2007). https://doi.org/10.1007/s00232-007-9073-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-007-9073-5

Keywords

Navigation