Skip to main content
Log in

Electrogenic H+ Transport and pH Gradients Generated by a V-H+-ATPase in the Isolated Perfused Larval Drosophila Midgut

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

A method for microperfusion of isolated segments of the midgut epithelium of Drosophila larvae has been developed to characterize cellular transport pathways and membrane transporters. Stereological ultrastructural morphometry shows that this epithelium has unusually long tight junctions, with little or no lateral intercellular volume normally found in most epithelia. Amplification of the apical and basal aspects of the cells, by ≈ 17-fold and ≈ 7-fold, respectively, predicts an almost exclusively transcellular transport system for solutes. This correlates with the high lumen-negative transepithelial potential (Vt) of 38 to 45 mV and high resistance (Rt) of 800 to 1400 Ω • cm2 measured by terminated cable analysis, in contrast to other microperfused epithelia like the renal proximal tubule. Several blockers (amiloride 10−4 M, ouabain 10−4 M, bumetanide 10−4 M), K+-free solutions, or organic solutes such as D-glucose 10 mM or DL-alanine 0.5 mM failed to affect Vt or Rt. Bafilomycin-A1 (3 to 5 μM) decreased Vt by ≈ 40% and short-circuit current (Isc) by ≈ 50%, and decreased intracellular pH when applied from the basal side only, consistent with an inhibition of an electrogenic V-H+-ATPase located in the basal membrane. Gradients of H+ were detected by pH microelectrodes close to the basal aspect of the cells or within the basal extracellular labyrinth. The apical membrane is more conductive than the basal membrane, facilitating secretion of base (presumably HCO3), driven by the basal V-H+-ATPase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Abbreviations

BEL,:

basal extracellular labyrinth;

DMSO,:

dimethyl-sulfoxide;

HEPES,:

N-2-hydroxyethylpiperazine-N’-2-ethaesulfonic acid;

Isc,:

short-circuit current;

LIS,:

lateral intracellular space;

Rt,:

transepithelial resistance;

Va,:

apical cell membrane potential;

Vb,:

basal cell membrane potential;

V-H+-ATPase,:

vacuolar-proton-adenosinetriphosphatase;

Vt,:

transepithelial potential, perfusion end;

Vc,:

transepithelial potential, collection end.

References

  • Ashburner M. 1989. Drosophila. A Laboratory Manual. Second edition, Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Berenbaum M. 1980. Adaptive significance of midgut pH in larval Lepidoptera. Am. Nat. 115:138–146

    Article  Google Scholar 

  • Beyenbach K.W., Pannabecker T.L. Nagel W. 2000. Central role of the apical membrane H+-ATPase in electrogenesis and epithelial transport in malpighian tubules. J. Exp. Biol. 203:1459–1468

    CAS  PubMed  Google Scholar 

  • Boudko D.Y., Moroz L.L., Harvey W.R., Linser P.J. 2001a. Alkalinization by chloride / bicarbonate pathway in larval mosquito midgut. Proc. Natl. Acad. Sci. USA 98:15354–15359

    Article  CAS  Google Scholar 

  • Boudko D.Y., Moroz L.L., Linser P.J., Trimarchi J.R., Smith P.J., Harvey W.R. 2001b. In situ analysis of pH gradients in mosquito larvae using non-invasive, self-referencing, pH-sensitive microelectrodes. J. Exp. Biol. 204:691–699

    CAS  Google Scholar 

  • Brown D., Gluck S., Hartwig J. 1987. Structure of the novel membrane-coating material in proton-secreting epithelial cells and identification as an H+ATPase. J. Cell Biol. 105:1637–1648

    CAS  PubMed  Google Scholar 

  • Dadd R.H. 1975. Alkalinity within the midgut of mosquito larvae with alkaline-active digestive enzymes. J. Insect Physiol. 21:1847–1853

    Article  CAS  PubMed  Google Scholar 

  • Dow J.A.T. 1984. Extremely high pH in biological systems; a model for carbonate transport. Am. J. Physiol. 246:R633–R635

    CAS  PubMed  Google Scholar 

  • Dow J.A.T. 1986. Insect midgut function. Adv. Insect Physiol. 19:187–328

    CAS  Google Scholar 

  • Dow J.A.T. 1992. pH gradients in Lepidopteran midgut. J. Exp. Biol. 172:355–375

    CAS  PubMed  Google Scholar 

  • Dubreuil R.R., Frankel J., Wang P., Howrylak J., Kappil M., Grushko T.A. 1998. Mutations of α Spectrin and labial block cuprophilic cell differentiation and acid secretion in the middle midgut of Drosophila larvae. Dev. Biol. 194:1–11

    Article  CAS  PubMed  Google Scholar 

  • Dubreuil R.R., Grushko T., Baumann O. 2001. Differential effects of a labial mutation on the development, structure, and function of stomach acid-secreting cells in Drosophila melanogaster larvae and adults. Cell Tissue Res. 306:167–178

    Article  CAS  PubMed  Google Scholar 

  • Filippova M., Ross L.S., Gill S.S. 1998. Cloning of the V ATPase B subunit cDNA from Culex quinquefasciatus and expression of the B and C subunits in mosquitoes. Insect Mol. Biol. 7:223–232

    CAS  PubMed  Google Scholar 

  • Greenberg B. 1968. Micro-potentiometric pH determinations of muscoid maggot digestive tracts. Ann. Entomol. Soc. Am. 61:365–367

    CAS  PubMed  Google Scholar 

  • Harrison J.F. 2001. Insect acid-base physiology. Annu. Rev. Entomol. 46:221–259

    Article  CAS  PubMed  Google Scholar 

  • Klein U., Koch A., Moffett D.F. 1996. Ion transport in Lepidoptera. In: M.J. Lehane, P.F. Billingsley, editors. Biology of the Insect Midgut. Chapman & Hall, London, pp. 236–264

    Google Scholar 

  • Martin J.S., Martin M.M. 1984. Surfactants: their role in preventing the precipitation of proteins by tannins in insect guts. Oecologia 61:342–345

    Article  Google Scholar 

  • Maunsbach A.B., Boulpaep E.L. 1984. Quantitative ultrastructure and functional correlates in proximal tubule of Ambystoma and Necturus. Am. J. Physiol. 246:F710–F724

    CAS  PubMed  Google Scholar 

  • Schultz J.C., Lechowicz M.J. 1986. Host plant, larval age and feeding behavior influence midgut pH in the gypsy moth (Lymantria dispar). Oecologia 71:133–137

    Article  Google Scholar 

  • Shanbhag S.R., Singh K., Singh R.N. 1992. Ultrastucture of the femoral chordotonal organs and their novel synaptic organization in the legs of Drosophila melanogaster Meigen (Diptera: Drosophilidae). Int. J. Insect Morphol. & Embryol 21:311–322

    Google Scholar 

  • Shanbhag S., Tripathi S. 2005. An electrogenic V-H+-ATPase drives electrolyte transport in the isolated perfused larval Drosophila midgut. J. Physiol. 565P: C3

    Google Scholar 

  • Terra W.R., Ferriera C., Baker J.E. 1996. Compartmentalization of digestion. In: M.J. Lehane, P.F. Billingsley, editors, Biology of the Insect Midgut. Chapman and Hall, London, pp. 226–235

    Google Scholar 

  • Tripathi S., Morgunov N., Boulpaep E.L. 1985. Submicron tip breakage and silanization control improve ion-selective microelectrodes. Am. J. Physiol. 249:C514–C521

    CAS  PubMed  Google Scholar 

  • Tripathi S., Boulpaep E.L., Maunsbach A.B. 1987. Isolated perfused Ambystoma proximal tubule: hydrodynamics modulates ultrastructure. Am. J. Physiol. 252:F1129–F1147

    CAS  PubMed  Google Scholar 

  • Tripathi S., Boulpaep E.L. 1988. Cell membrane water permeabilities and streaming currents in Ambystoma proximal tubule. Am. J. Physiol. 255:F188–F203

    CAS  PubMed  Google Scholar 

  • Wagner C.A., Finberg K.E., Breton S., Marshansky V., Brown D., Geibel J.P. 2004. Renal Vacuolar H+-ATPase. Am. J. Physiol 84:1263–1314

    CAS  Google Scholar 

  • Zhuang Z., Linser P.J., Harvey W.R. 1999. Antibody to H+V-ATPase subunit E colocalizes with portasomes in alkaline larval midgut of a freshwater mosquito (Aedes aegypti L.). J. Exp. Biol. 202:2449–2460

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We record our gratitude to the late Peter D’Souza and to J. N. Parmar for fabrication of the microperfusion apparatus and excellent machining support. We thank T. V. Abraham for electronics and data acquisition software. Supported by Interdisciplinary Programme 10P-809.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Tripathi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shanbhag, S., Tripathi, S. Electrogenic H+ Transport and pH Gradients Generated by a V-H+-ATPase in the Isolated Perfused Larval Drosophila Midgut. J Membrane Biol 206, 61–72 (2005). https://doi.org/10.1007/s00232-005-0774-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-0774-1

Key words

Navigation